Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.
Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work. As a result these changes are pretty
minimal.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2637
llvm-svn: 200596
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
llvm-svn: 200271
This commit teaches the X86 backend to create the same X86 instructions when it
lowers an sadd/ssub with overflow intrinsic and a conditional branch that uses
that overflow result. This allows SelectionDAG to recognize and remove one of
the redundant operations.
This fixes <rdar://problem/15874016> and <rdar://problem/15661073>.
Reviewed by Nadav
llvm-svn: 199976
Add target specific rules for combining vselect dag nodes into movss/movsd
when possible.
If the vector type of the vselect dag node in input is either MVT::v4i13 or
MVT::v4f32, then try to fold according to rules:
1) fold (vselect (build_vector (0, -1, -1, -1)), A, B) -> (movss A, B)
2) fold (vselect (build_vector (-1, 0, 0, 0)), A, B) -> (movss B, A)
If the vector type of the vselect dag node in input is either MVT::v2i64 or
MVT::v2f64 (and we have SSE2), then try to fold according to rules:
3) fold (vselect (build_vector (0, -1)), A, B) -> (movsd A, B)
4) fold (vselect (build_vector (-1, 0)), A, B) -> (movsd B, A)
llvm-svn: 199683
MSVC on x64 requires that we create image relative symbol
references to refer to RTTI data. Seeing as how there is no way to
explicitly make reference to a given relocation type in LLVM IR, pattern
match expressions of the form &foo - &__ImageBase.
Differential Revision: http://llvm-reviews.chandlerc.com/D2523
llvm-svn: 199312
promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
llvm-svn: 199252
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199218
This fixes a regression intruced by r198113.
Revision r198113 introduced an algorithm that tries to fold a vector shift
by immediate count into a build_vector if the input vector is a known vector
of constants.
However the algorithm only worked under the assumption that the input vector
type and the shift type are exactly the same.
This patch disables the folding of vector shift by immediate count if the
input vector type and the shift value type are not the same.
llvm-svn: 199213
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199204
This moves the check up into the parent class so that all targets can use it
without having to copy (and keep in sync) the same error message.
llvm-svn: 198579
__builtin_returnaddress requires that the value passed into is be a constant.
However, at -O0 even a constant expression may not be converted to a constant.
Emit an error message intead of crashing.
llvm-svn: 198531
vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.
Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.
This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.
Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.
llvm-svn: 198113
This reverts commit r197481, recommiting r197469 with an extra fix.
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which changed the initial scheduler
to source-order as part of enabling the MI Scheduler for X86.
This re-commit changes the VASTART_SAVE_XMM_REGS custom inserter not to
try to save %flags, and adds a test that catches the bad behavior of
r197469.
<rdar://problem/15627766>
llvm-svn: 197503
http://llvm.org/bugs/show_bug.cgi?id=18045
Short issue description:
For X86 machines with sse < sse4.1 we got failures for some
particular load/store vector sequences:
$ clang-trunk -m32 -O2 test-case.c
fatal error: error in backend: Cannot select: 0x4200920: v4i32,ch = load 0x41d6ab0, 0x4205850,
0x41dcb10<LD16[getelementptr inbounds ([4 x i32]* @e, i32 0, i32 0)](align=4)> [ORD=82]
[ID=58]
0x4205850: i32 = X86ISD::Wrapper 0x41d5490 [ORD=26] [ID=43]
0x41d5490: i32 = TargetGlobalAddress<[4 x i32]* @e> 0 [ORD=26] [ID=23]
0x41dcb10: i32 = undef [ID=2]
The reason is that EltsFromConsecutiveLoads could emit such load instruction
both before and after legalize stage. Though this instruction is not legal for
machines with SSSE3 and lower.
The fix: In EltsFromConsecutiveLoads, if we have passed legalize stage, we
check whether nodes it emits are legal.
P.S.: If you get failure in time from 12:00 and till 22:00 (UTC-8),
perhaps I'll slow with response, so you better reject this commit. Thanks!
llvm-svn: 197492
Added scalar compare VCMPSS, VCMPSD.
Implemented LowerSELECT for scalar FP operations.
I replaced FSETCCss, FSETCCsd with one node type FSETCCs.
Node extract_vector_elt(v16i1/v8i1, idx) returns an element of type i1.
llvm-svn: 197384
While it's safe for the X86-specific shift nodes, dag combining will
kill generic nodes. Insert an AND to make it safe, isel will nuke it
as x86's shift instructions have an implicit AND.
Fixes PR16108, which contains a contraption to hit this case in between
constant folders.
llvm-svn: 197228
Most users would be surprised if "isCOFF" and "isMachO" were simultaneously
true, unless they'd put the compiler in a box with a gun attached to a photon
detector.
This makes sure precisely one of the three formats is true for any triple and
simplifies some target logic based on that.
llvm-svn: 196934
target independent.
Most of the x86 specific stackmap/patchpoint handling was necessitated by the
use of the native address-mode format for frame index operands. PEI has now
been modified to treat stackmap/patchpoint similarly to DEBUG_INFO, allowing
us to use a simple, platform independent register/offset pair for frame
indexes on stackmap/patchpoints.
Notes:
- Folding is now platform independent and automatically supported.
- Emiting patchpoints with direct memory references now just involves calling
the TargetLoweringBase::emitPatchPoint utility method from the target's
XXXTargetLowering::EmitInstrWithCustomInserter method. (See
X86TargetLowering for an example).
- No more ugly platform-specific operand parsers.
This patch shouldn't change the generated output for X86.
llvm-svn: 195944
- Fix bug in (vsext (vzext x)) -> (vsext x) in SIGN_EXTEND_IN_REG
lowering where we need to check whether x is a vector type (in-reg
type) of i8, i16 or i32; otherwise, that optimization is not valid.
llvm-svn: 195779
A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.
For example:
entry:
%a = alloca i64...
llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)
Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.
llvm-svn: 195712
Utilizing the 8 and 16 bit comparison instructions, even when an input can
be folded into the comparison instruction itself, is typically not worth it.
There are too many partial register stalls as a result, leading to significant
slowdowns. By always performing comparisons on at least 32-bit
registers, performance of the calculation chain leading to the
comparison improves. Continue to use the smaller comparisons when
minimizing size, as that allows better folding of loads into the
comparison instructions.
rdar://15386341
llvm-svn: 195496
- When simplifying the mask generation for BLEND, check whether that mask is
also consumed by other non-BLEND insns. If true, skip that simplification.
llvm-svn: 195476
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size.
It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel.
llvm-svn: 195383
clang optimizes tail calls, as in this example:
int foo(void);
int bar(void) {
return foo();
}
where the call is transformed to:
calll .L0$pb
.L0$pb:
popl %eax
.Ltmp0:
addl $_GLOBAL_OFFSET_TABLE_+(.Ltmp0-.L0$pb), %eax
movl foo@GOT(%eax), %eax
popl %ebp
jmpl *%eax # TAILCALL
However, the GOT references must all be resolved at dlopen() time, and so this
approach cannot be used with lazy dynamic linking (e.g. using RTLD_LAZY), which
usually populates the PLT with stubs that perform the actual resolving.
This patch changes X86TargetLowering::LowerCall() to skip tail call
optimization, if the called function is a global or external symbol.
Patch by Dimitry Andric!
PR15086
llvm-svn: 195318
This patch reapplies r193676 with an additional fix for the Hexagon backend. The
SystemZ backend has already been fixed by r194148.
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
llvm-svn: 194542
This patch moves the jump address materialization inside the noop slide. This
enables patching of the materialization itself or its complete removal. This
patch also adds the ability to define scratch registers that can be used safely
by the code called from the patchpoint intrinsic. At least one scratch register
is required, because that one is used for the materialization of the jump
address. This patch depends on D2009.
Differential Revision: http://llvm-reviews.chandlerc.com/D2074
Reviewed by Andy
llvm-svn: 194306
The idea of the AnyReg Calling Convention is to provide the call arguments in
registers, but not to force them to be placed in a paticular order into a
specified set of registers. Instead it is up tp the register allocator to assign
any register as it sees fit. The same applies to the return value (if
applicable).
Differential Revision: http://llvm-reviews.chandlerc.com/D2009
Reviewed by Andy
llvm-svn: 194293
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. This mask has
usually the same size as the VSELECT return type (except for Intel KNL). Now the
type legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
llvm-svn: 193676
This optimization is not SSE specific so I am moving it to DAGco.
The new scalar_to_vector dag node exposed a missing pattern in the AArch64 target that I needed to add.
llvm-svn: 193393
Calling _chkstk is required on ELF as well as COFF on Windows. Without
_chkstk, functions requiring large stack crash in initialization code.
Previous code tested for COFF format but not Mach-O and this patch modifies
the code to test for Windows OS (both Windows target and MingW target)
but not Mach-O object format: Looks like macho environment was used to
build some EFI code.
Credits to Andrew MacPherson.
llvm-svn: 193289
Without _chkstk functions requiring large stack crash in
initialization code. Previous code tested for COFF format but
not Mach-O and this patch modifies the code to test for Windows.
Credits to Andrew MacPherson.
llvm-svn: 193263
On sandy bridge (PR17654) we now get
vpxor %xmm1, %xmm1, %xmm1
vpunpckhbw %xmm1, %xmm0, %xmm2
vpunpcklbw %xmm1, %xmm0, %xmm0
vinsertf128 $1, %xmm2, %ymm0, %ymm0
On haswell it's a simple
vpmovzxbw %xmm0, %ymm0
There is a maze of duplicated and dead transforms and patterns in this
area. Remove the dead custom lowering of zext v8i16 to v8i32, that's
already handled by LowerAVXExtend.
llvm-svn: 193262
the instruction defenitions and ISEL reflect this.
Prior to this patch these instructions took an i32i8imm, and the high bits were
dropped during encoding. This led to incorrect behavior for shifts by
immediates higher than 255. This patch fixes that issue by detecting large
immediate shifts and returning constant zero (for logical shifts) or capping
the shift amount at an encodable value (for arithmetic shifts).
Fixes <rdar://problem/14968098>
llvm-svn: 193096
Consider the following:
typedef unsigned short ushort4U __attribute__((ext_vector_type(4),
aligned(2)));
typedef unsigned short ushort4 __attribute__((ext_vector_type(4)));
typedef unsigned short ushort8 __attribute__((ext_vector_type(8)));
typedef int int4 __attribute__((ext_vector_type(4)));
int4 __bbase_cvt_int(ushort4 v) {
ushort8 a;
a.lo = v;
return _mm_cvtepu16_epi32(a);
}
This generates the, not unreasonable, IR:
define <4 x i32> @foo0(double %v.coerce) nounwind ssp {
%tmp = bitcast double %v.coerce to <4 x i16>
%tmp1 = shufflevector <4 x i16> %tmp, <4 x i16> undef, <8 x i32> <i32
%0, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
%tmp2 = tail call <4 x i32> @llvm.x86.sse41.pmovzxwd(<8 x i16> %tmp1)
ret <4 x i32> %tmp2
}
The problem is when type legalization gets hold of the v4i16. It
legalizes that by spilling to the stack, then doing a zero-extending
load. Things go even more silly from there, ending up with something
like:
_foo0:
movsd %xmm0, -8(%rsp) <== Spill to the stack.
movq -8(%rsp), %xmm0 <== Reload it right back out.
pmovzxwd %xmm0, %xmm1 <== Here's what we actually asked for.
pblendw $1, %xmm1, %xmm0 <== We don't need this at all
pmovzxwd %xmm0, %xmm0 <== We already did this
ret
The v8i8 to v8i16 zext intrinsic gives even worse results, with two
table lookups via pshufb instructions(!!).
To avoid all that, we can move the bitcasting until after we've formed
the wider (legal) vector type. Then our normal codegen flows along
nicely and we get the expected:
_foo0:
pmovzxwd %xmm0, %xmm0
ret
rdar://15245794
llvm-svn: 192866
- Type of index used in extract_vector_elt or insert_vector_elt supposes
to be TLI.getVectorIdxTy() which is pointer type on most targets. It'd
better to truncate (or zero-extend in case it's changed later) it to
mask element type to guarantee they are matching instead of asserting
that.
llvm-svn: 192722
- Lower signed division by constant powers-of-2 to target-independent
DAG operators instead of target-dependent ones to support them better
on targets where vector types are legal but shift operators on that
types are illegal. E.g., on AVX, PSRAW is only available on <8 x i16>
though <16 x i16> is a legal type.
llvm-svn: 192721
In AVX 256bit vectors are valid vectors and therefore the Type Legalizer doesn't
split the VSELECT and SETCC nodes. AVX only supports MIN/MAX on 128bit vectors
and this fix enables vector splitting for this special case in the X86 DAG
Combiner.
This fix is related to PR16695, PR17002, and <rdar://problem/14594431>.
llvm-svn: 191131
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask for the given target. This mask has usually
te same size as the VSELECT return type (except for Intel KNL). Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
llvm-svn: 191130
If the DAG already has only legal types, then the second round of DAG combines
is skipped. In this case VSELECT+SETCC patterns that match a more efficient
instruction (e.g. min/max) are never recognized.
This fix allows VSELECT+SETCC combines if the types are already legal before DAG
type legalization.
Reviewer: Nadav
llvm-svn: 190105