when the CXTranslationUnit_CacheCompletionResults option is given to
clang_parseTranslationUnit(). Essentially, we compute code-completion
results for macro definitions after we have parsed the file, then
store an ASTContext-agnostic version of those results (completion
string, cursor kind, priority, and active contexts) in the
ASTUnit. When performing code completion in that ASTUnit, we splice
the macro definition results into the results provided by the actual
code-completion (which has had macros turned off) before libclang gets
those results. We use completion context information to only splice in
those results that make sense for that context.
With a completion involving all of the macros from Cocoa.h and a few other
system libraries (totally ~8500 macro definitions) living in a
precompiled header, we get about a 9% performance improvement from
code completion, since we no longer have to deserialize all of the
macro definitions from the precompiled header.
Note that macro definitions are merely the canary; the cache is
designed to also support other top-level declarations, which should be
a bigger performance win. That optimization will be next.
Note also that there is no mechanism for determining when to throw
away the cache and recompute its contents.
llvm-svn: 111051
clang_reparseTranslationUnit(), along with a function to retrieve the
default recommended reparsing options for a translation unit.
Also, add the CXTranslationUnit_CacheCompletionResults flag, which is
also currently unused.
llvm-svn: 110811
"editing" mode, introduce a separate function
clang_defaultEditingTranslationUnitOptions() that retrieves the set of
options. No functionality change.
llvm-svn: 110613
flags enumeration + default-generating function that allows
code-completion to be customized via the libclang API.
Plus, turn on spell-checking when performing code completion.
llvm-svn: 110319
completion within the translation unit using the same command-line
arguments for parsing the translation unit. Eventually, we'll reuse
the precompiled preamble to improve code-completion performance, and
this also gives us a place to cache results.
Expose this function via the new libclang function
clang_codeCompleteAt(), which performs the code completion within a
CXTranslationUnit. The completion occurs in-process
(clang_codeCompletion() runs code completion out-of-process).
llvm-svn: 110210
interaction, by effectively defaulting to
DISABLE_SMART_POINTERS. We're embracing the model where all AST nodes
are ASTContext-allocated and live as long as the ASTContext lives.
llvm-svn: 109374
reparses an already-parsed translation unit. At the moment it's just a
convenience function, but we hope to use it for performance
optimizations.
llvm-svn: 108756
and we now include the file name that declares the symbol with no linkage in the USR.
USRs for such symbols are generated only in restructed cases, e.g., anonymous enum declarations,
typedefs, etc.
llvm-svn: 101542
knobs to control formatting. Eventually, I'd like to merge the
implementation of this code with the TextDiagnosticPrinter, so that
it's easy for CIndex clients to produce beautiful diagnostics like the
clang compiler does.
Use this new function to display diagnostics within c-index-test.
llvm-svn: 96603
we attach diagnostics to translation units and code-completion
results, so they can be queried at any time.
To facilitate this, the new StoredDiagnostic class stores a diagnostic
in a serializable/deserializable form, and ASTUnit knows how to
capture diagnostics in this stored form. CIndex's CXDiagnostic is a
thin wrapper around StoredDiagnostic, providing a C interface to
stored or de-serialized diagnostics.
I've XFAIL'd one test case temporarily, because currently we end up
storing diagnostics in an ASTUnit that's never returned to the user
(because it contains errors). I'll introduce a temporary fix for this
soon; the real fix will be to allow us to return and query invalid ASTs.
llvm-svn: 96592