Add a new feature to process save-core on Darwin systems -- for
lldb to create a user process corefile with only the dirty (modified
memory) pages included. All of the binaries that were used in the
corefile are assumed to still exist on the system for the duration
of the use of the corefile. A new --style option to process save-core
is added, so a full corefile can be requested if portability across
systems, or across time, is needed for this corefile.
debugserver can now identify the dirty pages in a memory region
when queried with qMemoryRegionInfo, and the size of vm pages is
given in qHostInfo.
Create a new "all image infos" LC_NOTE for Mach-O which allows us
to describe all of the binaries that were loaded in the process --
load address, UUID, file path, segment load addresses, and optionally
whether code from the binary was executing on any thread. The old
"read dyld_all_image_infos and then the in-memory Mach-O load
commands to get segment load addresses" no longer works when we
only have dirty memory.
rdar://69670807
Differential Revision: https://reviews.llvm.org/D88387
This adds a basic SB API for creating and stopping traces.
Note: This doesn't add any APIs for inspecting individual instructions. That'd be a more complicated change and it might be better to enhande the dump functionality to output the data in binary format. I'll leave that for a later diff.
This also enhances the existing tests so that they test the same flow using both the command interface and the SB API.
I also did some cleanup of legacy code.
Differential Revision: https://reviews.llvm.org/D103500
This documents the behaviour of the different SBType functions with notes for
the language-specific behaviour for C/C++/Objective-C. All of this reflects the
current behaviour of LLDB (even though that also means some functions behave
kinda weird but at least they are now documented to be weird)
Reviewed By: #lldb, mib
Differential Revision: https://reviews.llvm.org/D103454
This is another step towards implementing the equivalent of
`platform process list` and related functionality.
`uint32_t` is used for the argument count and index despite the
underlying value being `size_t` to be consistent with other
index-based access to arguments.
Differential Revision: https://reviews.llvm.org/D103675
This is present when doing a `platform process list` and is
tracked by the underlying code. To do something like the
process list via the SB API in the future, this must be
exposed.
Differential Revision: https://reviews.llvm.org/D103375
Introduce three new stop reasons for fork, vfork and vforkdone events.
This includes server support for serializing fork/vfork events into
gdb-remote protocol. The stop infos for the two base events take a pair
of PID and TID for the newly forked process.
Differential Revision: https://reviews.llvm.org/D100196
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In order to facilitate the writting of Scripted Processes, this patch
introduces a `ScriptedProcess` python base class in the lldb module.
The base class holds the python interface with all the - abstract -
methods that need to be implemented by the inherited class but also some
methods that can be overwritten.
This patch also provides an example of a Scripted Process with the
`MyScriptedProcess` class.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95712
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a ScriptedProcess interface to the ScriptInterpreter and
more specifically, to the ScriptInterpreterPython.
This interface will be used in the C++ `ScriptProcess` Process Plugin to
call the script methods.
At the moment, not all methods are implemented, they will upstreamed in
upcoming patches.
This patch also adds helper methods to the ScriptInterpreter to
convert `SBAPI` Types (SBData & SBError) to `lldb_private` types
(DataExtractor & Status).
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95711
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new command options to the CommandObjectProcessLaunch
for scripted processes.
Among the options, the user need to specify the class name managing the
scripted process. The user can also use a key-value dictionary holding
arbitrary data that will be passed to the managing class.
This patch also adds getters and setters to `SBLaunchInfo` for the
class name managing the scripted process and the dictionary.
rdar://65508855
Differential Review: https://reviews.llvm.org/D95710
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Ignore `-Wreturn-type-c-linkage` diagnostics for `LLDBSwigPythonBreakpointCallbackFunction`.
The function is defined in `python-wrapper.swig` which uses `extern "C" { ... }` blocks.
The declaration of this function in `ScriptInterpreterPython.cpp` already uses these
same pragmas to silence the warning there.
This prevents `-Werror` builds from failing.
Differential Revision: https://reviews.llvm.org/D98368
This patch exposes the getter and setter methods for the command
interpreter `print_errors` run option.
rdar://74816984
Differential Revision: https://reviews.llvm.org/D98001
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In order to facilitate the writting of Scripted Processes, this patch
introduces a `ScriptedProcess` python base class in the lldb module.
The base class holds the python interface with all the - abstract -
methods that need to be implemented by the inherited class but also some
methods that can be overwritten.
This patch also provides an example of a Scripted Process with the
`MyScriptedProcess` class.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95712
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a ScriptedProcess interface to the ScriptInterpreter and
more specifically, to the ScriptInterpreterPython.
This interface will be used in the C++ `ScriptProcess` Process Plugin to
call the script methods.
At the moment, not all methods are implemented, they will upstreamed in
upcoming patches.
This patch also adds helper methods to the ScriptInterpreter to
convert `SBAPI` Types (SBData & SBError) to `lldb_private` types
(DataExtractor & Status).
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95711
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new command options to the CommandObjectProcessLaunch
for scripted processes.
Among the options, the user need to specify the class name managing the
scripted process. The user can also use a key-value dictionary holding
arbitrary data that will be passed to the managing class.
This patch also adds getters and setters to `SBLaunchInfo` for the
class name managing the scripted process and the dictionary.
rdar://65508855
Differential Review: https://reviews.llvm.org/D95710
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The Python code generated by SWIG is compatible with both Python 2 and
Python 3. The -py3 option enables Python 2 incompatible features such as
function annotations and abstract base classes.
Differential revision: https://reviews.llvm.org/D96096
This patch adds an `SBTarget::IsLoaded(const SBModule&) const` endpoint
to lldb's Scripting Bridge API. As the name suggests, it will allow the
user to know if the module is loaded in a specific target.
rdar://37957625
Differential Review: https://reviews.llvm.org/D95686
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Adds support for running a Lua function when a breakpoint is hit.
Example:
breakpoint command add -s lua -F abc
The above runs the Lua function 'abc' passing 2 arguments. 'frame', 'bp_loc' and 'extra_args'.
A third parameter 'extra_args' is only present when there is structured data
declared in the command line.
Example:
breakpoint command add -s lua -F abc -k foo -v bar
Differential Revision: https://reviews.llvm.org/D93649
This patch adds the integer handling typemaps and the typemap for
string returning functions.
The integer handling typemaps overrides SWIG's own typemaps to distinct
the handling of integers from floating point.
The typemap for string returning functions is a port of Python's
typemap.
Differential Revision: https://reviews.llvm.org/D94937
Enums and constants are currently missing in the new LLDB Python API docs.
In theory we could just let them be autogenerated like the SB API classes, but sadly the generated documentation
suffers from a bunch of problems. Most of these problems come from the way SWIG is representing enums, which is
done by translating every single enum case into its own constant. This has a bunch of nasty effects:
* Because SWIG throws away the enum types, we can't actually reference the enum type itself in the API. Also because automodapi is impossible to script, this can't be fixed in post (at least without running like sed over the output files).
* The lack of enum types also causes that every enum *case* has its own full doc page. Having a full doc page that just shows a single enum case is pointless and it really slows down sphinx.
* There is no SWIG code for the enums, so there is also no place to write documentation strings for them. Also there is no support for copying the doxygen strings (which would be in the wrong format, but better than nothing) for enums (let alone our defines), so we can't really document all this code.
* Because the enum cases are just forwards to the native lldb module (which we mock), automodapi actually takes the `Mock` docstrings and adds it to every single enum case.
I don't see any way to solve this via automodapi or SWIG. The most reasonable way to solve this is IMHO to write a simple Clang tool
that just parses our enum/constant headers and emits an *.rst file that we check in. This way we can do all the LLDB-specific enum case and constant
grouping that we need to make a readable documentation page.
As we're without any real documentation until I get around to write that tool, I wrote a doc page for the enums/constants as a stop gap measure.
Most of this is done by just grepping our enum header and then manually cleaning up all the artifacts and copying the few doc strings we have.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94959
Right now we're using the 'content' role as default which will just render
these things as cursive (which isn't really useful for code examples). It also
prevents us from assigning a more useful default role in the future.
Mostly just making sure the indentation is right (SBDebugger had 0 spaces
as it was still plain text, the others had too much indentation or other
minor issues).
The first line of the doc string ends up on the SB API class summary at
the root page of the Python API web page of LLDB. Currently many of the
descriptions are missing or are several lines which makes the table really
hard to read.
This just adds the missing docstrings where possible and fixes the formatting
where necessary.
This translates most of the old ASCII art in our documentation to the
equivalent in restructured text (which the new version of the LLDB docs
is using).
This patch exposes the Target::CreateBreakpoint overload with the
boolean argument to move to the neareast code to the SBAPI.
This is useful when creating column breakpoints to restrict lldb's
resolution to the pointed source location, preventing it to go to the next
line.
rdar://72196842
Differential Revision: https://reviews.llvm.org/D93266
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch exposes the Target::CreateBreakpoint overload with the
boolean argument to move to the neareast code to the SBAPI.
This is useful when creating column breakpoints to restrict lldb's
resolution to the pointed source location, preventing it to go to the next
line.
rdar://72196842
Differential Revision: https://reviews.llvm.org/D93266
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
These callbacks are set using the following:
breakpoint command add -s lua -o "print('hello world!')"
The user supplied script is executed as:
function (frame, bp_loc, ...)
<body>
end
So the local variables 'frame', 'bp_loc' and vararg are all accessible.
Any global variables declared will persist in the Lua interpreter.
A user should never hold 'frame' and 'bp_loc' in a global variable as
these userdatas are context dependent.
Differential Revision: https://reviews.llvm.org/D91508
This reverts commit f775fe5964.
I fixed a return type error in the original patch that was causing a test failure.
Also added a REQUIRES: python to the shell test so we'll skip this for
people who build lldb w/o Python.
Also added another test for the error printing.
Usually when we enter a SWIG wrapper function from Python, SWIG automatically
adds a `Py_BEGIN_ALLOW_THREADS`/`Py_END_ALLOW_THREADS` around the call to the SB
API C++ function. This will ensure that Python's GIL is released when we enter
LLDB and locked again when we return to the wrapper code.
D51569 changed this behaviour but only for the generated `__str__` wrappers. The
added `nothreadallow` disables the injection of the GIL release/re-acquire code
and the GIL is now kept locked when entering LLDB and is expected to be still
locked when returning from the LLDB implementation. The main reason for that was
that back when D51569 landed the wrapper itself created a Python string. These
days it just creates a std::string and SWIG itself takes care of getting the GIL
and creating the Python string from the std::string, so that workaround isn't
necessary anymore.
This patch just removes `nothreadallow` so that our `__str__` functions now
behave like all other wrapper functions in that they release the GIL when
calling into the SB API implementation.
The motivation here is actually to work around another potential bug in LLDB.
When one calls into the LLDB SB API while holding the GIL and that call causes
LLDB to interpret some Python script via `ScriptInterpreterPython`, then the GIL
will be unlocked when the control flow returns from the SB API. In the case of
the `__str__` wrapper this would cause that the next call to a Python function
requiring the GIL would fail (as SWIG will not try to reacquire the GIL as it
isn't aware that LLDB removed it).
The reason for this unexpected GIL release seems to be a workaround for recent
Python versions:
```
// The only case we should go further and acquire the GIL: it is unlocked.
if (PyGILState_Check())
return;
```
The early-exit here causes `InitializePythonRAII::m_was_already_initialized` to
be always false and that causes that `InitializePythonRAII`'s destructor always
directly unlocks the GIL via `PyEval_SaveThread`. I'm investigating how to
properly fix this bug in a follow up patch, but for now this straightforward
patch seems to be enough to unblock my other patches (and it also has the
benefit of removing this workaround).
The test for this is just a simple test for `std::deque` which has a synthetic
child provider implemented as a Python script. Inspecting the deque object will
cause `expect_expr` to create a string error message by calling
`str(deque_object)`. Printing the ValueObject causes the Python script for the
synthetic children to execute which then triggers the bug described above where
the GIL ends up being unlocked.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D88302
Previously, there was a little ambiguity about whether IsInlined should
return true for an inlined lexical block, since technically the lexical
block would not represent an inlined function (it'd just be contained
within one).
Edit suggested by Jim Ingham.