Linalg transformations are currently exposed as DRRs.
Unfortunately RewriterGen does not play well with the line of work on named linalg ops which require variadic operands and results.
Additionally, DRR is arguably not the right abstraction to expose compositions of such patterns that don't rely on SSA use-def semantics.
This revision abandons DRRs and exposes manually written C++ patterns.
Refactorings and cleanups are performed to uniformize APIs.
This refactoring will allow replacing the currently manually specified Linalg named ops.
A collateral victim of this refactoring is the `tileAndFuse` DRR, and the one associated test, which will be revived at a later time.
Lastly, the following 2 tests do not add value and are altered:
- a dot_perm tile + interchange test does not test anything new and is removed
- a dot tile + lower to loops does not need 2-D tiling and is trimmed.
The buffer allocated by a promotion can be subject to other transformations afterward. For example it could be vectorized, in which case it is needed to ensure that this buffer is memory-aligned.
Differential Revision: https://reviews.llvm.org/D78556
Unfortunately FileCheck ignores directives with whitespace between the directive and the colon (`CHECK :` for example), thus most of the directives of this test were ignored.
Differential Revision: https://reviews.llvm.org/D78548
The promotion transformation is promoting all input and output buffers of the transformed op. The user might want to only promote some of these buffers.
Differential Revision: https://reviews.llvm.org/D78498
The function attribute in generic ops is not paying for itself.
A region is the more standardized way of specifying a custom computation.
If needed this region can call a function directly.
This is deemed more natural than managing a dedicated function attribute.
This also simplifies named ops generation by trimming unnecessary complexity.
Differential Revision: https://reviews.llvm.org/D78266
This attribute details the segment sizes for operand groups within the operation. This revision add support for automatically populating this attribute in the declarative parser.
Differential Revision: https://reviews.llvm.org/D75315
Summary:
This diff adds a transformation patter to rewrite linalg.fill as broadcasting a scaler into a vector.
It uses the same preconditioning as matmul (memory is contiguous).
Reviewers: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73391
Summary:
This is a simple extension to allow vectorization to work not only on GenericLinalgOp
but more generally across named ops too.
For now, this still only vectorizes matmul-like ops but is a step towards more
generic vectorization of Linalg ops.
Reviewers: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72942
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
This PR targest issue tensorflow/mlir#295. It exposes the already existing
subiew promotion pass as a declarative pattern
Change-Id: If901ebef9fb53fcd0b12ecc536f6b174ce320b92
Closestensorflow/mlir#315
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/315 from tetuante:issue295 8e5f268b6d85f31015c33505329dbd7a4db97ac5
PiperOrigin-RevId: 285801463
This CL adds more common information to StructuredOpsUtils.h
The n_view attribute is retired in favor of args_in + args_out but the CL is otherwise NFC.
PiperOrigin-RevId: 285000621
This patch closes issue tensorflow/mlir#272
We add a standalone iterator permutation transformation to Linalg.
This transformation composes a permutation map with the maps in the
"indexing_maps" attribute. It also permutes "iterator_types"
accordingly.
Change-Id: I7c1e693b8203aeecc595a7c012e738ca1100c857
Closestensorflow/mlir#307
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/307 from tetuante:issue272 f7908d58792f4111119721885e247045104f1131
PiperOrigin-RevId: 284824102
This CL uses the newly expanded matcher support to easily detect when a linalg.generic has a multiply-accumulate body. A linalg.generic with such a body is rewritten as a vector contraction.
This CL additionally limits the rewrite to the case of matrix multiplication on contiguous and statically shaped memrefs for now.
Before expanding further, we should harden the infrastructure for expressing custom ops with the structured ops abstraction.
PiperOrigin-RevId: 284566659
This CL rewrites the linalg ops to loops transformations as patterns that can be targeted directly from Tablegen. Reliance on OpFolder is removed and to cope with it we introduce local folding patterns that are applied greedily.
PiperOrigin-RevId: 282765550
This CL adds a simple pattern for specifying producer-consumer fusion on Linalg operations.
Implementing such an extension reveals some interesting properties.
Since Linalg operates on a buffer abstraction, the output buffers are specified as in/out parameters to the ops. As a consequence, there are no SSA use-def chains and one cannot specify complex dag input patterns with the current infrastructure.
Instead this CL uses constraints based on the existing linalg dependence analysis to focus the pattern and refine patterns based on the type of op that last wrote in a buffer.
This is a very local property and is less powerful than the generic dag specification based on SSA use-def chains.
This will be generalized in the future.
PiperOrigin-RevId: 277931503
Linalg ops provide a good anchor for pattern matching/rewriting transformations.
This CL adds a simple example of how multi-level tiling may be specified by attaching a simple StringAttr to ops as they are transformed so we can easily specify partial lowering to control transformation application.
This is a first stab at taking advantage of higher-level information contained in Linalg ops and will evolve in the future.
PiperOrigin-RevId: 277497958