Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D106277
Add in-source documentation on how CanonicalLoopInfo is intended to be used. In particular, clarify what parts of a CanonicalLoopInfo is considered part of the loop, that those parts must be side-effect free, and that InsertPoints to instructions outside those parts can be expected to be preserved after method calls implementing loop-associated directives.
CanonicalLoopInfo are now invalidated after it does not describe canonical loop anymore and asserts when trying to use it afterwards.
In addition, rename `createXYZWorkshareLoop` to `applyXYZWorkshareLoop` and remove the update location to avoid that the impression that they insert something from scratch at that location where in reality its InsertPoint is ignored. createStaticWorkshareLoop does not return a CanonicalLoopInfo anymore. First, it was not a canonical loop in the clarified sense (containing side-effects in form of calls to the OpenMP runtime). Second, it is ambiguous which of the two possible canonical loops it should actually return. It will not be needed before a feature expected to be introduced in OpenMP 6.0
Also see discussion in D105706.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D107540
- They need to be preserved even if there's no reference within the
device code as the host code may need to initialize them based on the
application logic.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D107718
We were using an OpaqueValueExpr allocated on the stack to store
the size of a VLA. Because the VLASizeMap in CodegenFunction
uses the address of the expression to avoid recomputing VLAs,
we were accidentally reusing an earlier llvm::Value. This led to
invalid LLVM IR.
This is a temporary solution until VLASizeMap can be pushed and popped
based on the context.
Differential Revision: https://reviews.llvm.org/D107666
After D94315 we add the `NoInline` attribute to the outlined function to handle
data environments in the OpenMP if clause. This conflicted with the `AlwaysInline`
attribute added to the outlined function. for better performance in D106799.
The data environments should ideally not require NoInline, but for now this
fixes PR51349.
Reviewed By: mikerice
Differential Revision: https://reviews.llvm.org/D107649
This is recommit of the patch 16ff91ebcc,
reverted in 0c28a7c990 because it had
an error in call of getFastMathFlags (base type should be FPMathOperator
but not Instruction). The original commit message is duplicated below:
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
GCC supports multiple forms of -falign-loops=.
-falign-loops= is currently ignored in Clang.
This patch implements the simplest but the most useful form where N is a
power of 2.
The underlying implementation uses a `llvm::TargetOptions` option for now.
Bitcode generation ignores this option.
Differential Revision: https://reviews.llvm.org/D106701
Implement target builtins for gfx90a including fadd64, fadd32, add2h,
max and min on various global, flat and ds address spaces for which
intrinsics are implemented.
Differential Revision: https://reviews.llvm.org/D106909
This matches the behavior of GCC.
Patch does not change remapping logic itself, so adding one simple smoke test should be enough.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107393
For fixed SVE types, predicates are represented using vectors of i8,
where as for scalable types they are represented using vectors of i1. We
can avoid going through memory for casts between these by bitcasting the
i1 scalable vectors to/from a scalable i8 vector of matching size, which
can then use the existing vector insert/extract logic.
Differential Revision: https://reviews.llvm.org/D106860
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
In LLVM IR terms the ACLE type 'data512_t' is essentially an aggregate
type { [8 x i64] }. When emitting code for inline assembly operands,
clang tries to scalarize aggregate types to an integer of the equivalent
length, otherwise it passes them by-reference. This patch adds a target
hook to tell whether a given inline assembly operand is scalarizable
so that clang can emit code to pass/return it by-value.
Differential Revision: https://reviews.llvm.org/D94098
Pulled out the OptimizationLevel class from PassBuilder in order to be able to access it from within the PassManager and avoid include conflicts.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D107025
@kpn pointed out that the global variable initialization functions didn't
have the "strictfp" metadata set correctly, and @rjmccall said that there
was buggy code in SetFPModel and StartFunction, this patch is to solve
those problems. When Sema creates a FunctionDecl, it sets the
FunctionDeclBits.UsesFPIntrin to "true" if the lexical FP settings
(i.e. a combination of command line options and #pragma float_control
settings) correspond to ConstrainedFP mode. That bit is used when CodeGen
starts codegen for a llvm function, and it translates into the
"strictfp" function attribute. See bugs.llvm.org/show_bug.cgi?id=44571
Reviewed By: Aaron Ballman
Differential Revision: https://reviews.llvm.org/D102343
On ELF, an SHT_INIT_ARRAY outside a section group is a GC root. The current
codegen abuses SHT_INIT_ARRAY in a section group to mean a GC root.
On PE/COFF, the dynamic initialization for `__declspec(selectany)` in a comdat
can be garbage collected by `-opt:ref`.
Call `addUsedGlobal` for the two cases to fix the abuse/bug.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106925
The device runtime contains several calls to __kmpc_get_hardware_num_threads_in_block
and __kmpc_get_hardware_num_blocks. If the thread_limit and the num_teams are constant,
these calls can be folded to the constant value.
In commit D106033 we have the optimization phase. This commit adds the attributes to
the outlined function for the grid size. the two attributes are `omp_target_num_teams` and
`omp_target_thread_limit`. These values are added as long as they are constant.
Two functions are created `getNumThreadsExprForTargetDirective` and
`getNumTeamsExprForTargetDirective`. The original functions `emitNumTeamsForTargetDirective`
and `emitNumThreadsForTargetDirective` identify the expresion and emit the code.
However, for the Device version of the outlined function, we cannot emit anything.
Therefore, this is a first attempt to separate emision of code from deduction of the
values.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106298
Replace the clang builtins and LLVM intrinsics for the SIMD extmul instructions
with normal codegen patterns.
Differential Revision: https://reviews.llvm.org/D106724
Allegedly the DWARF backend ignores this field of DIEnumerator, but we
set it nonetheless in case we decide to use it in the future.
Alternatively, we could remove it, but it is simpler to pass down the
signed bit as it is in the AST for now.
Implemented to address comments on D106585
This patch adds the always inline attribute to the outlined functions generated
by OpenMP regions. Because there is only a single instance of this function and
it always has internal linkage it is safe to inline in every instance it is
created. This could potentially lead to performance degredation due to
inflated register counts in the parallel region.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106799
DIEnumerator stores an APInt as of April 2020, so now we don't need to
truncate the enumerator value to 64 bits. Fixes assertions during IRGen.
Split from D105320, thanks to Matheus Izvekov for the test case and
report.
Differential Revision: https://reviews.llvm.org/D106585
XL provides functions __vec_ldrmb/__vec_strmb for loading/storing a
sequence of 1 to 16 bytes in big endian order, right justified in the
vector register (regardless of target endianness).
This is equivalent to vec_xl_len_r/vec_xst_len_r which are only
available on Power9.
This patch simply uses the Power9 functions when compiled for Power9,
but provides a more general implementation for Power8.
Differential revision: https://reviews.llvm.org/D106757
In OpenMP 5.1:
> If the `write` or `update` clause is specifieded, the atomic operation is not an atomic conditional update for which the comparison fails, and the effective memory ordering is `release`, `acq_rel`, or `seq_cst`, the strong flush on entry to the atomic operation is also a release flush. If the `read` or `update` clause is specified and the effective memory ordering is `acquire`, `acq_rel`, or `seq_cst` then the strong flush on exit from the atomic operation is also an acquire flush.
In OpenMP 5.0:
> If the `write`, `update`, or **`capture`** clause is specified and the `release`, `acq_rel`, or `seq_cst` clause is specified then the strong flush on entry to the atomic operation is also a release flush. If the `read` or `capture` clause is specified and the `acquire`, `acq_rel`, or `seq_cst` clause is specified then the strong flush on exit from the atomic operation is also an acquire flush.
From my understanding, in OpenMP 5.1, `capture` is removed from the requirement for flush, therefore we don't have to enforce it.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D100768
Replace the clang builtins and LLVM intrinsics for {f32x4,f64x2}.{pmin,pmax}
with standard codegen patterns. Since wasm_simd128.h uses an integer vector as
the standard single vector type, the IR for the pmin and pmax intrinsic
functions contains bitcasts that would not be there otherwise. Add extra codegen
patterns that can still select the pmin and pmax instructions in the presence of
these bitcasts.
Differential Revision: https://reviews.llvm.org/D106612
Address sanitizer passes may generate call of ASAN bitcode library
functions after bitcode linking in lld, therefore lld cannot add
those symbols since it does not know they will be used later.
To solve this issue, clang emits a reference to a bicode library
function which calls all ASAN functions which need to be
preserved. This basically force all ASAN functions to be
linked in.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D106315
This is part of a patch series working towards the ability to make
SourceLocation into a 64-bit type to handle larger translation units.
!srcloc is generated in clang codegen, and pulled back out by llvm
functions like AsmPrinter::emitInlineAsm that need to report errors in
the inline asm. From there it goes to LLVMContext::emitError, is
stored in DiagnosticInfoInlineAsm, and ends up back in clang, at
BackendConsumer::InlineAsmDiagHandler(), which reconstitutes a true
clang::SourceLocation from the integer cookie.
Throughout this code path, it's now 64-bit rather than 32, which means
that if SourceLocation is expanded to a 64-bit type, this error report
won't lose half of the data.
The compiler will tolerate both of i32 and i64 !srcloc metadata in
input IR without faulting. Test added in llvm/MC. (The semantic
accuracy of the metadata is another matter, but I don't know of any
situation where that matters: if you're reading an IR file written by
a previous run of clang, you don't have the SourceManager that can
relate those source locations back to the original source files.)
Original version of the patch by Mikhail Maltsev.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D105491
This patch changes `__kmpc_free_shared` to take an additional argument
corresponding to the associated allocation's size. This makes it easier to
implement the allocator in the runtime.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106496
These builtins were added to capture the fact that the underlying Wasm
instructions return i32s and implicitly sign or zero extend the extracted lanes
in the case of the i8x16 and i16x8 variants. But we do sufficient optimizations
during code gen that these low-level details do not need to be exposed to users.
This commit replaces the use of the builtins in wasm_simd128.h with normal
target-independent vector code. As a result, we can switch the relevant
intrinsics to use functions rather than macros and can use more user-friendly
return types rather than trying to precisely expose the underlying Wasm types.
Note, however, that the generated LLVM IR is no different after this change.
Differential Revision: https://reviews.llvm.org/D106500
Replace the experimental clang builtins and LLVM intrinsics for these
instructions with normal instruction selection patterns. The wasm_simd128.h
intrinsics header was already using portable code for the corresponding
intrinsics, so now it produces the correct instructions.
Differential Revision: https://reviews.llvm.org/D106400
This patch is in a series of patches to provide
builtins for compatibility with the XL compiler.
This patch adds builtins related to floating point
operations
Reviewed By: #powerpc, nemanjai, amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D103986
This is part of a patch series working towards the ability to make
SourceLocation into a 64-bit type to handle larger translation units.
NFC: this patch introduces typedefs for the integer type used by
SourceLocation and makes all the boring changes to use the typedefs
everywhere, but for the moment, they are unconditionally defined to
uint32_t.
Patch originally by Mikhail Maltsev.
Reviewed By: tmatheson
Differential Revision: https://reviews.llvm.org/D105492
Implemented builtins for mtmsr, mfspr, mtspr on PowerPC;
the patch is intended for XL Compatibility.
Differential revision: https://reviews.llvm.org/D106130
This patch implements store, load, move from and to registers related
builtins, as well as the builtin for stfiw. The patch aims to provide
feature parady with xlC on AIX.
Differential revision: https://reviews.llvm.org/D105946
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch add the builtin and emit target independent
code for __cmpb.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D105194
This patch fixes `__builtin_ppc_recipdivf`, `__builtin_ppc_recipdivd`,
`__builtin_ppc_rsqrtf`, and `__builtin_ppc_rsqrtd`. FastMathFlags are
set to fast immediately before emitting these builtins. Now the flags
are restored to their previous values after the builtins are emitted.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D105984
Added a number of different builtins that exist in the XL compiler. Most of
these builtins already exist in clang under a different name.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D104386
This patch is in a series of patches to provide builtins for
compatibility with the XL compiler. This patch adds software divide
builtins with no checking. These builtins are each emitted as a fast
fdiv.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D106150
Summary:
The AIX linker will produce errors on unresolved weak symbols. Change the
generated code to not check for the initialization function but just call
it and ensure that it always exists. Also, the AIX atexit routine has a
different name (and signature) so call it correctly. Update the lit tests
to test on AIX appropriately.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: hubert.reinterpretcast (Hubert Tong)
Differential Revision: https://reviews.llvm.org/D104420
It's noteworthy that GCC has the same bug here, which is a bit
surprising. Both Clang and GCC's bug is only for function template
arguments that are themselves templates with default template arguments
(f1<t1<int[, missing_default_here]>>). Probably because function name
matching isn't generally necessary - whereas type matching is necessary
for DWARF consumers to associate declarations and definitions across
translation units, so the bug's been addressed there already - but
continued to exist for function templates since it's fairly benign
there.
I came across this while working on a change that could reconstitute
these pretty printed names based on the rest of the DWARF, reducing the
size of the DWARF by not having to encode all the template parameters in
the name string. That reconstitution code can't tell the difference
between a defaulted argument or not, so couldn't create the current
buggy-ish output.
Making the names more consistent between direct and indirect references,
and between function and class templates seems all to the good.
(I fixed the function template version of this a few years back in
9fdd09a4cc - clearly I should've looked
more closely and generalized the code better so it only had to be fixed
once - well, doing that here now)
Remove uses of to-be-deprecated API. In cases where the correct
element type was not immediately obvious to me, fall back to
explicit getPointerElementType().
Remove uses of to-be-deprecated API.
Unfortunately this one mostly just makes the use of
getPointerElementType() explicit, as the correct type to use
wasn't immediately available (deriving it from QualType is left
as an excercise to the reader).
Remove uses of to-be-deprecated API. I've fallen back to calling
getPointerElementType() in some cases where the correct type wasn't
immediately obvious to me.
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102107
This provides intrinsics for emitting instructions that set the FPSCR (`mtfsf/mtfsfi`).
The patch also conservatively marks the rounding mode as an implicit def for both since they both may set the rounding mode depending on the operands.
Reviewed By: #powerpc, qiucf
Differential Revision: https://reviews.llvm.org/D105957
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for population
count, reversed load and store related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D106021
This patch implements the `__popcntb` XL compatibility builtin for 32bit in the frontend and backend. This patch also updates tests for `__popcntb` and other XL Compat sync related builtins.
Reviewed By: #powerpc, nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D105360
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and emit target independent
code for rotate related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D104744
This patch make coroutine passes run by default in LLVM pipeline. Now
the clang and opt could handle IR inputs containing coroutine intrinsics
without special options.
It should be fine. On the one hand, the coroutine passes seems to be stable
since there are already many projects using coroutine feature.
On the other hand, the coroutine passes should do nothing for IR who doesn't
contain coroutine intrinsic.
Test Plan: check-llvm
Reviewed by: lxfind, aeubanks
Differential Revision: https://reviews.llvm.org/D105877
Replace the experimental clang builtins and LLVM intrinsics for these
instructions with normal codegen patterns. Resolves PR50435.
Differential Revision: https://reviews.llvm.org/D106019
Replace the experimental clang builtin and LLVM intrinsics for these
instructions with normal codegen patterns. Resolves PR50433.
Differential Revision: https://reviews.llvm.org/D105950
LDARX and LWARX sometimes gets optimized out by the compiler
when it is critical to the correctness of the code. This inline asm generation
ensures that it preserved.
Differential Revision: https://reviews.llvm.org/D105754
Properties that were declared `@property(copy, nonatomic) id foo` make an
unnecessary call to objc_get_property(). This call can be replaced with a
direct access to the backing variable identical to how a `@property(nonatomic)
id foo` would do it.
This reduces codegen by 4 bytes (x86_64/arm64) and removes a cross linkage unit
function call per property declared as copy/nonatomic.
Differential Revision: https://reviews.llvm.org/D105311
Replace the clang builtin function and LLVM intrinsic for
f32x4.demote_zero_f64x2 with combines from normal SDNodes. Also add missing
combines for i32x4.trunc_sat_zero_f64x2_{s,u}, which share the same pattern.
Differential Revision: https://reviews.llvm.org/D105755
In the spirit of TRegions [0], this patch provides a simpler and uniform
interface for a kernel to set up the device runtime. The OMPIRBuilder is
used for reuse in Flang. A custom state machine will be generated in the
follow up patch.
The "surplus" threads of the "master warp" will not exit early anymore
so we need to use non-aligned barriers. The new runtime will not have an
extra warp but also require these non-aligned barriers.
[0] https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
This was in parts extracted from D59319.
Reviewed By: ABataev, JonChesterfield
Differential Revision: https://reviews.llvm.org/D101976
Broke check-clang, see https://reviews.llvm.org/D102307#2869065
Ran `git revert -n ebbe149a6f08535ede848a531a601ae6591cfbc5..269416d41908bb670f67af689155d5ab8eea689a`
In the spirit of TRegions [0], this patch provides a simpler and uniform
interface for a kernel to set up the device runtime. The OMPIRBuilder is
used for reuse in Flang. A custom state machine will be generated in the
follow up patch.
The "surplus" threads of the "master warp" will not exit early anymore
so we need to use non-aligned barriers. The new runtime will not have an
extra warp but also require these non-aligned barriers.
[0] https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
This was in parts extracted from D59319.
Reviewed By: ABataev, JonChesterfield
Differential Revision: https://reviews.llvm.org/D101976
Replace the clang builtin function and LLVM intrinsic previously used to select
the f64x2.promote_low_f32x4 instruction with custom combines from standard
SelectionDAG nodes. Implement the new combines to share code with the similar
combines for f64x2.convert_low_i32x4_{s,u}. Resolves PR50232.
Differential Revision: https://reviews.llvm.org/D105675
If the base is used in a map clause and later we have a memberexpr with
this base, and the member is a pointer, and this pointer is dereferenced
anyhow (subscript, array section, dereference, etc.), such components
should be considered as overlapped, otherwise it may lead to incorrect
size computations, since we try to map a pointee as a part of the whole
struct, which is not true for the pointer members.
Differential Revision: https://reviews.llvm.org/D105562
This change is intended as initial setup. The plan is to add
more semantic checks later. I plan to update the documentation
as more semantic checks are added (instead of documenting the
details up front). Most of the code closely mirrors that for
the Swift calling convention. Three places are marked as
[FIXME: swiftasynccc]; those will be addressed once the
corresponding convention is introduced in LLVM.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D95561
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
No need to emit private copyfor firstprivate constants in target
regions, we can use the original copy instead.
Differential Revision: https://reviews.llvm.org/D105647
In preparation for dropping support for it. I've replaced it with
a proper type where the correct type was obvious and left an
explicit getPointerElementType() where it wasn't.
This fixes a gap in the `overloadable` attribute support (K&R declared
functions would get mangled symbol names, but that name wouldn't be
represented in the debug info linkage name field for the function) and
in -funique-internal-linkage-names (this came up in review discussion on
D98799) where K&R static declarations would not get the uniqued linkage
names.