This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
I've updated the patch D16586 to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D72932
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
Patch D16586 was updated to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Differential Revision: https://reviews.llvm.org/D72932
The following people contributed to this patch:
- Diogo Sampaio
- Ties Stuij
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
tools/clang/test/CodeGen/packed-nest-unpacked.c contains this test:
struct XBitfield {
unsigned b1 : 10;
unsigned b2 : 12;
unsigned b3 : 10;
};
struct YBitfield {
char x;
struct XBitfield y;
} __attribute((packed));
struct YBitfield gbitfield;
unsigned test7() {
// CHECK: @test7
// CHECK: load i32, i32* getelementptr inbounds (%struct.YBitfield, %struct.YBitfield* @gbitfield, i32 0, i32 1, i32 0), align 4
return gbitfield.y.b2;
}
The "align 4" is actually wrong. Accessing all of "gbitfield.y" as a single
i32 is of course possible, but that still doesn't make it 4-byte aligned as
it remains packed at offset 1 in the surrounding gbitfield object.
This alignment was changed by commit r169489, which also introduced changes
to bitfield access code in CGExpr.cpp. Code before that change used to take
into account *both* the alignment of the field to be accessed within the
current struct, *and* the alignment of that outer struct itself; this logic
was removed by the above commit.
Neglecting to consider both values can cause incorrect code to be generated
(I've seen an unaligned access crash on SystemZ due to this bug).
In order to always use the best known alignment value, this patch removes
the CGBitFieldInfo::StorageAlignment member and replaces it with a
StorageOffset member specifying the offset from the start of the surrounding
struct to the bitfield's underlying storage. This offset can then be combined
with the best-known alignment for a bitfield access lvalue to determine the
alignment to use when accessing the bitfield's storage.
Differential Revision: http://reviews.llvm.org/D11034
llvm-svn: 241916
generally support the C++11 memory model requirements for bitfield
accesses by relying more heavily on LLVM's memory model.
The primary change this introduces is to move from a manually aligned
and strided access pattern across the bits of the bitfield to a much
simpler lump access of all bits in the bitfield followed by math to
extract the bits relevant for the particular field.
This simplifies the code significantly, but relies on LLVM to
intelligently lowering these integers.
I have tested LLVM's lowering both synthetically and in benchmarks. The
lowering appears to be functional, and there are no really significant
performance regressions. Different code patterns accessing bitfields
will vary in how this impacts them. The only real regressions I'm seeing
are a few patterns where the LLVM code generation for loads that feed
directly into a mask operation don't take advantage of the x86 ability
to do a smaller load and a cheap zero-extension. This doesn't regress
any benchmark in the nightly test suite on my box past the noise
threshold, but my box is quite noisy. I'll be watching the LNT numbers,
and will look into further improvements to the LLVM lowering as needed.
llvm-svn: 169489
a zero constant for a complete class. rdar://problem/8424975
To make this happen, track the field indexes for virtual bases
in the complete object. I'm curious whether we might be better
off making CGRecordLayoutBuilder *much* more reliant on
ASTRecordLayout; we're currently duplicating an awful lot of the ABI
layout logic.
llvm-svn: 125555
Make CGT defer to the ABI on all member pointer types.
This requires giving CGT a handle to the ABI.
It's way easier to make that work if we avoid lazily creating the ABI.
Make it so.
llvm-svn: 111786
- For now, these policies are computed to match the current IRgen strategy, although the new information isn't being used yet (except in -fdump-record-layouts).
- Design comments appreciated.
llvm-svn: 101178