a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
Everyone except R600 was manually passing the length of a static array
at each callsite, calculated in a variety of interesting ways. Far
easier to let ArrayRef handle that.
There should be no functional change, but out of tree targets may have
to tweak their calls as with these examples.
llvm-svn: 230118
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
type (in addition to the memory type).
The *LoadExt* legalization handling used to only have one type, the
memory type. This forced users to assume that as long as the extload
for the memory type was declared legal, and the result type was legal,
the whole extload was legal.
However, this isn't always the case. For instance, on X86, with AVX,
this is legal:
v4i32 load, zext from v4i8
but this isn't:
v4i64 load, zext from v4i8
Whereas v4i64 is (arguably) legal, even without AVX2.
Note that the same thing was done a while ago for truncstores (r46140),
but I assume no one needed it yet for extloads, so here we go.
Calls to getLoadExtAction were changed to add the value type, found
manually in the surrounding code.
Calls to setLoadExtAction were mechanically changed, by wrapping the
call in a loop, to match previous behavior. The loop iterates over
the MVT subrange corresponding to the memory type (FP vectors, etc...).
I also pulled neighboring setTruncStoreActions into some of the loops;
those shouldn't make a difference, as the additional types are illegal.
(e.g., i128->i1 truncstores on PPC.)
No functional change intended.
Differential Revision: http://reviews.llvm.org/D6532
llvm-svn: 225421
Make sure they all have llvm_unreachable on the default path out of the switch. Remove unnecessary "default: break". Remove a 'return' after unreachable. Fix some indentation.
llvm-svn: 225114
Previously print+verify passes were added in a very unsystematic way, which is
annoying when debugging as you miss intermediate steps and allows bugs to stay
unnotice when no verification is performed.
To make this change practical I added the possibility to explicitely disable
verification. I used this option on all places where no verification was
performed previously (because alot of places actually don't pass the
MachineVerifier).
In the long term these problems should be fixed properly and verification
enabled after each pass. I'll enable some more verification in subsequent
commits.
This is the 2nd attempt at this after realizing that PassManager::add() may
actually delete the pass.
llvm-svn: 224059
Previously print+verify passes were added in a very unsystematic way, which is
annoying when debugging as you miss intermediate steps and allows bugs to stay
unnotice when no verification is performed.
To make this change practical I added the possibility to explicitely disable
verification. I used this option on all places where no verification was
performed previously (because alot of places actually don't pass the
MachineVerifier).
In the long term these problems should be fixed properly and verification
enabled after each pass. I'll enable some more verification in subsequent
commits.
llvm-svn: 224042
These recently all grew a unique_ptr<TargetLoweringObjectFile> member in
r221878. When anyone calls a virtual method of a class, clang-cl
requires all virtual methods to be semantically valid. This includes the
implicit virtual destructor, which triggers instantiation of the
unique_ptr destructor, which fails because the type being deleted is
incomplete.
This is just part of the ongoing saga of PR20337, which is affecting
Blink as well. Because the MSVC ABI doesn't have key functions, we end
up referencing the vtable and implicit destructor on any virtual call
through a class. We don't actually end up emitting the dtor, so it'd be
good if we could avoid this unneeded type completion work.
llvm-svn: 222480
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.
Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.
llvm-svn: 221751
This fixes a few cases of:
* Wrong variable name style.
* Lines longer than 80 columns.
* Repeated names in comments.
* clang-format of the above.
This make the next patch a lot easier to read.
llvm-svn: 221615
Summary:
Backends can use setInsertFencesForAtomic to signal to the middle-end that
montonic is the only memory ordering they can accept for
stores/loads/rmws/cmpxchg. The code lowering those accesses with a stronger
ordering to fences + monotonic accesses is currently living in
SelectionDAGBuilder.cpp. In this patch I propose moving this logic out of it
for several reasons:
- There is lots of redundancy to avoid: extremely similar logic already
exists in AtomicExpand.
- The current code in SelectionDAGBuilder does not use any target-hooks, it
does the same transformation for every backend that requires it
- As a result it is plain *unsound*, as it was apparently designed for ARM.
It happens to mostly work for the other targets because they are extremely
conservative, but Power for example had to switch to AtomicExpand to be
able to use lwsync safely (see r218331).
- Because it produces IR-level fences, it cannot be made sound ! This is noted
in the C++11 standard (section 29.3, page 1140):
```
Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering semantics.
```
It can also be seen by the following example (called IRIW in the litterature):
```
atomic<int> x = y = 0;
int r1, r2, r3, r4;
Thread 0:
x.store(1);
Thread 1:
y.store(1);
Thread 2:
r1 = x.load();
r2 = y.load();
Thread 3:
r3 = y.load();
r4 = x.load();
```
r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all seq_cst.
But if they are lowered to monotonic accesses, no amount of fences can prevent it..
This patch does three things (I could cut it into parts, but then some of them
would not be tested/testable, please tell me if you would prefer that):
- it provides a default implementation for emitLeadingFence/emitTrailingFence in
terms of IR-level fences, that mimic the original logic of SelectionDAGBuilder.
As we saw above, this is unsound, but the best that can be done without knowing
the targets well (and there is a comment warning about this risk).
- it then switches Mips/Sparc/XCore to use AtomicExpand, relying on this default
implementation (that exactly replicates the logic of SelectionDAGBuilder, so no
functional change)
- it finally erase this logic from SelectionDAGBuilder as it is dead-code.
Ideally, each target would define its own override for emitLeading/TrailingFence
using target-specific fences, but I do not know the Sparc/Mips/XCore memory model
well enough to do this, and they appear to be dealing fine with the ARM-inspired
default expansion for now (probably because they are overly conservative, as
Power was). If anyone wants to compile fences more agressively on these
platforms, the long comment should make it clear why he should first override
emitLeading/TrailingFence.
Test Plan: make check-all, no functional change
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5474
llvm-svn: 219957
On MachO, and MachO only, we cannot have a truly empty function since that
breaks the linker logic for atomizing the section.
When we are emitting a frame pointer, the presence of an unreachable will
create a cfi instruction pointing past the last instruction. This is perfectly
fine. The FDE information encodes the pc range it applies to. If some tool
cannot handle this, we should explicitly say which bug we are working around
and only work around it when it is actually relevant (not for ELF for example).
Given the unreachable we could omit the .cfi_def_cfa_register, but then
again, we could also omit the entire function prologue if we wanted to.
llvm-svn: 217801
ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
llvm-svn: 215887
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
The commit after this changes { } and 0bxx literals to be of type bits<n> and not int. This means we need to write exactly the right number of bits, and not rely on the values being silently zero extended for us.
llvm-svn: 215082
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
introduced during legalization. This pattern is based on other patterns
in the legalizer that I changed in the same way. Now, the legalizer
eagerly collects its garbage when necessary so that we can survive
leaving such nodes around for it.
Instead, we add an assert to make sure the node will be correctly
handled by that layer.
llvm-svn: 214602
so that we can use it to get the old-style JIT out of the subtarget.
This code should be removed when the old-style JIT is removed
(imminently).
llvm-svn: 214560
Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.
This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.
llvm-svn: 214449