levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
This reinstates r371805, reverted in r371813, with an additional fix for
lldb.
llvm-svn: 371817
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
llvm-svn: 371805
dead code.
This is important for C++ templates that essentially compute the valid
input in a way that is constant and will cause all the invalid cases to
be dead code that is deleted. Code in the wild actually does this and
GCC also accepts these kinds of patterns so it is important to support
it.
To make this work, we provide a non-error path to diagnose these issues,
and use a default-error warning instead. This keeps the relatively
strict handling but prevents nastiness like SFINAE on these errors. It
also allows us to safely use the system to diagnose this only when it
occurs at runtime (in emitted code).
Entertainingly, this required fixing the syntax in various other ways
for the x86 test because we never bothered to diagnose that the returns
were invalid.
Since debugging these compile failures was super confusing, I've also
improved the diagnostic to actually say what the value was. Most of the
checks I've made ignore this to simplify maintenance, but I've checked
it in a few places to make sure the diagnsotic is working.
Depends on D48462. Without that, we might actually crash some part of
the compiler after bypassing the error here.
Thanks to Richard, Ben Kramer, and especially Craig Topper for all the
help here.
Differential Revision: https://reviews.llvm.org/D48464
llvm-svn: 335309
This patch updates the vecintrin.h header file to provide the new
set of high-level vector built-in functions. This matches the
updated definition implemented by other compilers for the platform,
indicated by the pre-defined macro __VEC__ == 10302.
Note that some of the new functions (notably those involving the
vector float data type) are only available with -march=z14
(indicated by __ARCH__ == 12).
llvm-svn: 308199
This patch allows us to perform incompatible pointer conversions when
resolving overloads in C. So, the following code will no longer fail to
compile (though it will still emit warnings, assuming the user hasn't
opted out of them):
```
void foo(char *) __attribute__((overloadable));
void foo(int) __attribute__((overloadable));
void callFoo() {
unsigned char bar[128];
foo(bar); // selects the char* overload.
}
```
These conversions are ranked below all others, so:
A. Any other viable conversion will win out
B. If we had another incompatible pointer conversion in the example
above (e.g. `void foo(int *)`), we would complain about
an ambiguity.
Differential Revision: https://reviews.llvm.org/D24113
llvm-svn: 280553
This patch adds support for the System Z vector built-in functions.
The API-defined header file has the name vecintrin.h.
The user-level functions are defined in the same style as the clang
version of altivec.h, making heavy use of the __overloadable__ and
__always_inline__ attributes. Where possible the functions expand to
generic operations rather than specific built-in functions, in the hope
that that form can be optimised better.
Where a built-in routine is specified to require an immediate integer
argument, the __enable_if__ attribute is used to verify the argument is
in fact constant and in the appropriate range.
Based on a patch by Richard Sandiford.
llvm-svn: 243643