This patch places class definitions in implementation files into anonymous
namespaces to prevent weak vtables. This eliminates the need of providing an
out-of-line definition to pin the vtable explicitly to the file.
llvm-svn: 195092
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
Before this patch we would assert when building llvm as multiple shared
libraries (cmake's BUILD_SHARED_LIBS). The problem was the line
if (T.AsmStreamerCtorFn == Target::createDefaultAsmStreamer)
which returns false because of -fvisibility-inlines-hidden. It is easy
to fix just this one case, but I decided to try to also make the
registration more strict. It looks like the old logic for ignoring
followup registration was just a temporary hack that outlived its
usefulness.
This patch converts the ifs to asserts, fixes the few cases that were
registering twice and makes sure all the asserts compare with null.
Thanks for Joerg for reporting the problem and reviewing the patch.
llvm-svn: 192803
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
Both GCC and LLVM will implicitly define __ppc__ and __powerpc__ for
all PowerPC targets, whether 32- or 64-bit. They will both implicitly
define __ppc64__ and __powerpc64__ for 64-bit PowerPC targets, and not
for 32-bit targets. We cannot be sure that all other possible
compilers used to compile Clang/LLVM define both __ppc__ and
__powerpc__, for example, so it is best to check for both when relying
on either inside the Clang/LLVM code base.
This patch makes sure we always check for both variants. In addition,
it fixes one unnecessary check in lib/Target/PowerPC/PPCJITInfo.cpp.
(At least one of __ppc__ and __powerpc__ should always be defined when
compiling for a PowerPC target, no matter which compiler is used, so
testing for them is unnecessary.)
There are some places in the compiler that check for other variants,
like __POWERPC__ and _POWER, and I have left those in place. There is
no need to add them elsewhere. This seems to be in Apple-specific
code, and I won't take a chance on breaking it.
There is no intended change in behavior; thus, no test cases are
added.
llvm-svn: 187248
Similar to ARM change r182800, dynamic linker will read bits/addends from
the original object rather than from the object that might have been patched
previously. For the purpose of relocations for MCJIT stubs on MIPS, we
internally use otherwise unused MIPS relocations.
The change also enables MCJIT unit tests for MIPS (EL/BE), and the following
two tests now pass:
- MCJITTest.return_global and
- MCJITTest.multiple_functions.
These issues have been tracked as Bug 16250.
Patch by Petar Jovanovic.
llvm-svn: 187019
- lit tests verify that each line of input LLVM IR gets a !dbg node and a
corresponding entry of metadata that contains the line number
- unit tests verify that DebugIR works as advertised in the interface
- refactored some useful IR generation functionality from the MCJIT unit tests
so it can be reused
llvm-svn: 185212
MIPS does not handle multiple relocations correctly, so two tests from the
unittests are expected to fail. These are:
- MCJITTest.return_global and
- MCJITTest.multiple_functions.
Until the multiple relocations are fixed, XFAIL the MCJIT unittests for
MIPS. This issue is tracked as Bug 16250.
Patch by Petar Jovanovic.
llvm-svn: 184461
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182448
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182408
Revision r182233 partially reverted the change in r181200 to simplify
JIT unif test #ifdefs, because that change caused a link error on some
host operating systems where the export list requires the following
symbols to be defined:
JITTest_AvailableExternallyFunction
JITTest_AvailableExternallyGlobal
As discussed on the list, the commit reverts r182233 (and re-installs
the full r181200 change), and instead fixes the link problem by moving
those two symbols to the top of the file and unconditionally defining
them.
llvm-svn: 182367
The export list for this test requires the following symbols to be available:
JITTest_AvailableExternallyFunction
JITTest_AvailableExternallyGlobal
The change in r181200 commented them out, which caused the test to fail to
link, at least on Darwin. I have only reverted the change for arm, since I
can't test the other targets and since it sounds like that change was fixing
real problems for those other targets. It should be possible to rearrange the
code to keep those definitions outside the #ifdefs, but that should be done by
someone who can reproduce the problems that r181200 was trying to fix.
llvm-svn: 182233
BitVector/SmallBitVector::reference::operator bool remain implicit since
they model more exactly a bool, rather than something else that can be
boolean tested.
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
One behavior change (YAMLParser) was made, though no test case is
included as I'm not sure how to reach that code path. Essentially any
comparison of llvm::yaml::document_iterators would be invalid if neither
iterator was at the end.
This helped uncover a couple of bugs in Clang - test cases provided for
those in a separate commit along with similar changes to `operator bool`
instances in Clang.
llvm-svn: 181868
EngineBuilder interface required a JITMemoryManager even if it was being used
to construct an MCJIT. But the MCJIT actually wants a RTDyldMemoryManager.
Consequently, the SectionMemoryManager, which is meant for MCJIT, derived
from the JITMemoryManager and then stubbed out a bunch of JITMemoryManager
methods that weren't relevant to the MCJIT.
This patch fixes the situation: it teaches the EngineBuilder that
RTDyldMemoryManager is a supertype of JITMemoryManager, and that it's
appropriate to pass a RTDyldMemoryManager instead of a JITMemoryManager if
we're using the MCJIT. This allows us to remove the stub methods from
SectionMemoryManager, and make SectionMemoryManager a direct subtype of
RTDyldMemoryManager.
llvm-svn: 181820
MCJIT on Windows requires an explicit target triple with "-elf" appended to generate objects in ELF format. The common test framework was setting up this triple, but it wasn't passed to the C API in the test.
llvm-svn: 181614
This patch adds the necessary configuration bits and #ifdef's to set up
the JIT/MCJIT test cases for SystemZ. Like other recent targets, we do
fully support MCJIT, but do not support the old JIT at all. Set up the
lit config files accordingly, and disable old-JIT unit tests.
Patch by Richard Sandiford.
llvm-svn: 181207
Several platforms need to disable all old-JIT unit tests, since they only
support the new MCJIT. This currently done via #ifdef'ing out those tests
in the ExecutionEngine/JIT/*.cpp files. As those #ifdef's have grown
historically, we now have a number of repeated directives which -in total-
cover nearly the whole file, but leave a couple of helper functions out.
When building the tests with clang itself, those helper functions now
cause spurious "unused function" warnings.
To fix those warnings, and also to remove the duplicate #ifdef conditions
and make it easier to disable the tests for a new target, this patch
consolidates the #ifdefs into a single one per file, which covers all
the tests including all helper routines.
Tested on PowerPC and SystemZ.
llvm-svn: 181200
CodeModel: It's now possible to create an MCJIT instance with any CodeModel you like. Previously it was only possible to
create an MCJIT that used CodeModel::JITDefault.
EnableFastISel: It's now possible to turn on the fast instruction selector.
The CodeModel option required some trickery. The problem is that previously, we were ensuring future binary compatibility in
the MCJITCompilerOptions by mandating that the user bzero's the options struct and passes the sizeof() that he saw; the
bindings then bzero the remaining bits. This works great but assumes that the bitwise zero equivalent of any field is a
sensible default value.
But this is not the case for LLVMCodeModel, or its internal equivalent, llvm::CodeModel::Model. In both of those, the default
for a JIT is CodeModel::JITDefault (or LLVMCodeModelJITDefault), which is not bitwise zero.
Hence this change introduces LLVMInitializeMCJITCompilerOptions(), which will initialize the user's options struct with
defaults. The user will use this in the same way that they would have previously used memset() or bzero(). MCJITCAPITest.cpp
illustrates the change, as does the comment in ExecutionEngine.h.
llvm-svn: 180893
Re-submitting with fix for OCaml dependency problems (removing dependency on SectionMemoryManager when it isn't used).
Patch by Fili Pizlo
llvm-svn: 180720
Change unittests/ExecutionEngine/Makefile to include Makefile.config before
TARGET_HAS_JIT flag is checked.
Fixes bug: http://llvm.org/bugs/show_bug.cgi?id=15669
llvm-svn: 178871
On freebsd this makes sure that symbols are exported on the binaries that need
them. The net result is that we should get symbols in the binaries that need
them on every platform.
On linux x86-64 this reduces the size of the bin directory from 262MB to 250MB.
Patch by Stephen Checkoway.
llvm-svn: 178725