Add some data structures to represent for loops. These will be
referenced during object processing to do any needed iteration and
instantiation.
Add foreach keyword support to the lexer.
Add a mode to indicate that we're parsing a foreach loop. This allows
the value parser to early-out when processing the foreach value list.
Add a routine to parse foreach iteration declarations. This is
separate from ParseDeclaration because the type of the named value
(the iterator) doesn't match the type of the initializer value (the
value list). It also needs to add two values to the foreach record:
the iterator and the value list.
Add parsing support for foreach.
Add the code to process foreach loops and create defs based
on iterator values.
Allow foreach loops to be matched at the top level.
When parsing an IDValue check if it is a foreach loop iterator for one
of the active loops. If so, return a VarInit for it.
Add Emacs keyword support for foreach.
Add VIM keyword support for foreach.
Add tests to check foreach operation.
Add TableGen documentation for foreach.
Support foreach with multiple objects.
Support non-braced foreach body with one object.
Do not require types for the foreach declaration. Assume the iterator
type from the iteration list element type.
llvm-svn: 151164
For objects that can be identified by small unsigned keys, SparseSet
provides constant time clear() and fast deterministic iteration. Insert,
erase, and find operations are typically faster than hash tables.
SparseSet is useful for keeping information about physical registers,
virtual registers, or numbered basic blocks.
llvm-svn: 151110
Clarify that contributors are agreeing to license their code under the
license corresponding to the subproject that they are contributing to,
as requested by a potential contributor.
Also, as a drive-by, update the llvm-gcc/GPL section to mention dragonegg
and say that GPL code is all in its own repo's.
llvm-svn: 150065
This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).
llvm-svn: 149468
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
llvm-svn: 148553
Register masks will be used as a compact representation of large clobber
lists. Currently, an x86 call instruction has some 40 operands
representing call-clobbered registers. That's more than 1kB of useless
operands per call site.
A register mask operand references a bit mask of call-preserved
registers, everything else is clobbered. The bit mask will typically
come from TargetRegisterInfo::getCallPreservedMask().
By abandoning ImplicitDefs for call-clobbered registers, it also becomes
possible to share call instruction descriptions between calling
conventions, and we can get rid of the WINCALL* instructions.
This patch introduces the new operand kind. Future patches will add
RegMask support to target-independent passes before finally the fixed
clobber lists can be removed from call instruction descriptions.
llvm-svn: 148250
The registers are placed into the saved registers list in the reverse order,
which is why the original loop was written to loop backwards.
llvm-svn: 148064
The register allocators don't currently support adding reserved
registers while they are running. Extend the MRI API to keep track of
the set of reserved registers when register allocation started.
Target hooks like hasFP() and needsStackRealignment() can look at this
set to avoid reserving more registers during register allocation.
llvm-svn: 147577