pointer register.
This is the first of the series of patches which clean up the way global pointer
register is used. The patches will make the following improvements:
- Make $gp an allocatable temporary register rather than reserving it.
- Use a virtual register as the global pointer register and let the register
allocator decide which register to assign to it or whether spill/reloads are
needed.
- Make sure $gp is valid at the entry of a called function, which is necessary
for functions using lazy binding.
- Remove the need for emitting .cprestore and .cpload directives.
llvm-svn: 156671
For example, the first instruction in the code below can be eliminated if the
use of $vr0 is replaced with $zero:
addiu $vr0, $zero, 0
add $vr2, $vr1, $vr0
add $vr2, $vr1, $zero
llvm-svn: 152280
and stores was added.
- SelectAddr should return false if Parent is an unaligned f32 load or store.
- Only aligned load and store nodes should be matched to select reg+imm
floating point instructions.
- MIPS does not have support for f64 unaligned load or store instructions.
llvm-svn: 151843
reserving a physical register ($gp or $28) for that purpose.
This will completely eliminate loads that restore the value of $gp after every
function call, if the register allocator assigns a callee-saved register, or
eliminate unnecessary loads if it assigns a temporary register.
example:
.cpload $25 // set $gp.
...
.cprestore 16 // store $gp to stack slot 16($sp).
...
jalr $25 // function call. clobbers $gp.
lw $gp, 16($sp) // not emitted if callee-saved reg is chosen.
...
lw $2, 4($gp)
...
jalr $25 // function call.
lw $gp, 16($sp) // not emitted if $gp is not live after this instruction.
...
llvm-svn: 151402
This change reduces the number of instructions generated.
For example,
(load (add (sub $n0, $n1), (MipsLo got(s))))
results in the following sequence of instructions:
1. sub $n2, $n0, $n1
2. lw got(s)($n2)
Previously, three instructions were needed.
1. sub $n2, $n0, $n1
2. addiu $n3, $n2, got(s)
3. lw 0($n3)
llvm-svn: 146888
- Modify lowering of global TLS address nodes.
- Modify isel of ThreadPointer.
- Wrap target global TLS address nodes that are operands of loads with WrapperPIC.
- Remove Mips-specific DAG nodes TlsGd, TprelHi and TprelLo, which can be
substituted with other existing nodes.
llvm-svn: 146175
Mips1 does not support double precision loads or stores, therefore two single
precision loads or stores must be used in place of these instructions. This
patch treats double precision loads and stores as if they are legal
instructions until MCInstLowering, instead of generating the single precision
instructions during instruction selection or Prolog/Epilog code insertion.
Without the changes made in this patch, llc produces code that has the same
problem described in r137484 or bails out when
MipsInstrInfo::storeRegToStackSlot or loadRegFromStackSlot is called before
register allocation.
llvm-svn: 137711
integer register to a floating point register. It is not valid to interpret
the value of a floating pointer register as part of a double precision
floating point value after a single precision floating point computational
or move instruction stores its result to the register.
- In the test case, the following code is generated before this patch is
applied:
mtc1 $zero, $f2 ; unformatted copy to $f2
mov.s $f0, $f2 ; $f0 is in single format
sdc1 $f12, 0($sp)
mov.s $f1, $f2 ; $f1 is in single format
c.eq.d $f12, $f0 ; $f0 cannot be interpreted as double
- The following code is generated after this patch is applied:
mtc1 $zero, $f0 ; unformatted copy to $f0
mtc1 $zero, $f1 ; unformatted copy to $f1
c.eq.d $f12, $f0 ; $f0 can be interpreted as double
Bhanu Chetlapalli and Chris Dearman at MIPS technologies reported this bug and
provided the test case.
llvm-svn: 137484
passed the root of the match, even though only a few patterns
actually needed this (one in X86, several in ARM [which should
be refactored anyway], and some in CellSPU that I don't feel
like detangling). Instead of requiring all ComplexPatterns to
take the dead root, have targets opt into getting the root by
putting SDNPWantRoot on the ComplexPattern.
llvm-svn: 114471
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
llvm-svn: 97555
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
clear what information these functions are actually using.
This is also a micro-optimization, as passing a SDNode * around is
simpler than passing a { SDNode *, int } by value or reference.
llvm-svn: 92564
naming scheme used in SelectionDAG, where there are multiple kinds
of "target" nodes, but "machine" nodes are nodes which represent
a MachineInstr.
llvm-svn: 82790
Add MO flags to simplify the printing of relocations.
Remove the support for printing large code model relocs (which
aren't supported anyway).
llvm-svn: 80691
Add MO flags to simplify the printing of relocations.
Remove the support for printing large code model relocs (which
aren't supported anyway).
llvm-svn: 80278
carry GlobalBaseReg, and GlobalRetAddr too in Alpha's case. This
eliminates the need for them to search through the
MachineRegisterInfo livein list in order to identify these
virtual registers. EmitLiveInCopies is now the only user of the
virtual register portion of MachineRegisterInfo's livein data.
llvm-svn: 72802
and into the ScheduleDAGInstrs class, so that they don't get
destructed and re-constructed for each block. This fixes a
compile-time hot spot in the post-pass scheduler.
To help facilitate this, tidy and do some minor reorganization
in the scheduler constructor functions.
llvm-svn: 62275
priority function. Instead, just iterate over the AllNodes list, which is
already in topological order. This eliminates a fair amount of bookkeeping,
and speeds up the isel phase by about 15% on many testcases.
The impact on most targets is that AddToISelQueue calls can be simply removed.
In the x86 target, there are two additional notable changes.
The rule-bending AND+SHIFT optimization in MatchAddress that creates new
pre-isel nodes during isel is now a little more verbose, but more robust.
Instead of either creating an invalid DAG or creating an invalid topological
sort, as it has historically done, it can now just insert the new nodes into
the node list at a position where they will be consistent with the topological
ordering.
Also, the address-matching code has logic that checked to see if a node was
"already selected". However, when a node is selected, it has all its uses
taken away via ReplaceAllUsesWith or equivalent, so it won't recieve any
further visits from MatchAddress. This code is now removed.
llvm-svn: 58748
flag. Then in a debugger developers can set breakpoints at these calls
to see waht is about to be selected and what the resulting subgraph
looks like. This really helps when debugging instruction selection.
llvm-svn: 58278
Instead, just create one, and make sure everything that needs
it can access it. Previously most of the SelectionDAGISel
subclasses all had their own TargetLowering object, which was
redundant with the TargetLowering object in the TargetMachine
subclasses, except on Sparc, where SparcTargetMachine
didn't have a TargetLowering object. Change Sparc to work
more like the other targets here.
llvm-svn: 57016
- Add linkage to SymbolSDNode (default to external).
- Change ISD::ExternalSymbol to ISD::Symbol.
- Change ISD::TargetExternalSymbol to ISD::TargetSymbol
These changes pave the way to allowing SymbolSDNodes with non-external linkage.
llvm-svn: 56249
process up to a higher level. This allows FastISel to leverage
more of SelectionDAGISel's infastructure, such as updating Machine
PHI nodes.
Also, implement transitioning from SDISel back to FastISel in
the middle of a block, so it's now possible to go back and
forth. This allows FastISel to hand individual CallInsts and other
complicated things off to SDISel to handle, while handling the rest
of the block itself.
To help support this, reorganize the SelectionDAG class so that it
is allocated once and reused throughout a function, instead of
being completely reallocated for each block.
llvm-svn: 55219
replacement of multiple values. This is slightly more efficient
than doing multiple ReplaceAllUsesOfValueWith calls, and theoretically
could be optimized even further. However, an important property of this
new function is that it handles the case where the source value set and
destination value set overlap. This makes it feasible for isel to use
SelectNodeTo in many very common cases, which is advantageous because
SelectNodeTo avoids a temporary node and it doesn't require CSEMap
updates for users of values that don't change position.
Revamp MorphNodeTo, which is what does all the work of SelectNodeTo, to
handle operand lists more efficiently, and to correctly handle a number
of corner cases to which its new wider use exposes it.
This commit also includes a change to the encoding of post-isel opcodes
in SDNodes; now instead of being sandwiched between the target-independent
pre-isel opcodes and the target-dependent pre-isel opcodes, post-isel
opcodes are now represented as negative values. This makes it possible
to test if an opcode is pre-isel or post-isel without having to know
the size of the current target's post-isel instruction set.
These changes speed up llc overall by 3% and reduce memory usage by 10%
on the InstructionCombining.cpp testcase with -fast and -regalloc=local.
llvm-svn: 53728