warning to an error. C++ bans it, and both GCC and EDG diagnose it as
an error. Microsoft allows it, so we still warn in Microsoft
mode. Fixes <rdar://problem/11135644>.
llvm-svn: 163831
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
are otherwise too short to try to correct.
The TODOs added to two of the tests are for existing deficiencies in the
typo correction code that could be exposed by using longer identifiers.
llvm-svn: 158109
concerning qualified declarator-ids. We now diagnose extraneous
qualification at namespace scope (which we had previously missed) and
diagnose these qualification errors for all kinds of declarations; it
was rather uneven before. Fixes <rdar://problem/11135644>.
llvm-svn: 153577
Having a function declaration and definition with different types for a
parameter where the types have same (textual) name can occur when an unqualified
type name resolves to types in different namespaces in each location.
The error messages have been extended by adding notes that point to the first
parameter of the function definition that doesn't match the declaration, instead
of a generic "member declaration nearly matches". The generic message is still
used in cases where the mismatch is not in the paramenter list, such as
mismatched cv qualifiers on the member function itself.
llvm-svn: 136891
say "out-of-line definition differ from the declaration in the return type" instead of
the silly "functions that differ only in their return type cannot be overloaded".
Addresses rdar://7980179.
llvm-svn: 124939
members. Provide a hard error when the qualification doesn't match the
current class type, or a warning + Fix-it if it does match the current
class type. Fixes PR8159.
llvm-svn: 116445
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
nested-name-specifier (e.g., "class T::foo") fails to find a tag
member in the scope nominated by the
nested-name-specifier. Previously, we gave a bland
error: 'Nested' does not name a tag member in the specified scope
which didn't actually say where we were looking, which was rather
horrible when the nested-name-specifier was instantiated. Now, we give
something a bit better:
error: no class named 'Nested' in 'NoDepBase<T>'
llvm-svn: 100060
therefore not creating ElaboratedTypes, which are still pretty-printed
with the written tag).
Most of these testcase changes were done by script, so don't feel too
sorry for my fingers.
llvm-svn: 98149
propagating error conditions out of the various annotate-me-a-snowflake
routines. Generally (but not universally) removes redundant diagnostics
as well as, you know, not crashing on bad code. On the other hand,
I have just signed myself up to fix fiddly parser errors for the next
week. Again.
llvm-svn: 97221
why the candidate is non-viable. There's a lot we can do to improve this, but
it's a good start. Further improvements should probably be integrated with the
bad-initialization reporting routines.
llvm-svn: 93277
Magically fixes all the terrible lookup problems associated with not pushing
a new scope. Resolves an ancient xfail and an LLVM misparse.
llvm-svn: 91769
InitializationSequence. Specially, switch initialization of a C++
class type (either copy- or direct-initialization).
Also, make sure that we create an elidable copy-construction when
performing copy initialization of a C++ class variable. Fixes PR5826.
llvm-svn: 91750
different functions and pick the function at lookup initialization time.
In theory we could actually divide the criteria functions into N different
functions for the N cases, but it's so not worth it.
Among other things, lets us invoke LookupQualifiedName without recomputing
IDNS info every time.
Do some refactoring in SemaDecl to avoid an awkward special case in LQN
that was only necessary for redeclaration testing for anonymous structs/unions ---
which could be done more efficiently with a scoped lookup anyway.
llvm-svn: 91676
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
intended. On the first testcase in the bug, we now produce:
cxx-decl.cpp:12:2: error: unexpected ':' in nested name specifier
y:a a2;
^
::
instead of:
t.cc:8:1: error: C++ requires a type specifier for all declarations
x:a a2;
^
t.cc:8:2: error: invalid token after top level declarator
x:a a2;
^
;
t.cc:9:11: error: use of undeclared identifier 'a2'
x::a a3 = a2;
^
llvm-svn: 90713
the linkage of a declaration. Switch the lame (and completely wrong)
NamedDecl::hasLinkage() over to using the new NamedDecl::getLinkage(),
along with the "can this declaration be a template argument?" check
that started all of this.
Fixes -fsyntax-only for PR5597.
llvm-svn: 89891
unknown type name, e.g.,
foo::bar x;
when "bar" does not refer to a type in "foo".
With this change, the parser now calls into the action to perform
diagnostics and can try to recover by substituting in an appropriate
type. For example, this allows us to easily diagnose some missing
"typename" specifiers, which we now do:
test/SemaCXX/unknown-type-name.cpp:29:1: error: missing 'typename'
prior to dependent type name 'A<T>::type'
A<T>::type A<T>::f() { return type(); }
^~~~~~~~~~
typename
Fixes PR3990.
llvm-svn: 84053
what we found when we looked into <blah>", where <blah> is a
DeclContext*. We can now format DeclContext*'s in nice ways, e.g.,
"namespace N", "the global namespace", "'class Foo'".
This is part of PR3990, but we're not quite there yet.
llvm-svn: 84028
x->Base::f
We no longer try to "enter" the context of the type that "x" points
to. Instead, we drag that object type through the parser and pass it
into the Sema routines that need to know how to perform lookup within
member access expressions.
We now implement most of the crazy name lookup rules in C++
[basic.lookup.classref] for non-templated code, including performing
lookup both in the context of the type referred to by the member
access and in the scope of the member access itself and then detecting
ambiguities when the two lookups collide (p1 and p4; p3 and p7 are
still TODO). This change also corrects our handling of name lookup
within template arguments of template-ids inside the
nested-name-specifier (p6; we used to look into the scope of the
object expression for them) and fixes PR4703.
I have disabled some tests that involve member access expressions
where the object expression has dependent type, because we don't yet
have the ability to describe dependent nested-name-specifiers starting
with an identifier.
llvm-svn: 80843
these are usually because the parser was thoroughly confused. In addition
to typing the value being declared as an int and hoping for the best, we
mark the value as invalid so we don't get chains of errors when it is
used downstream. In C, implicit int actually is valid, so typing the thing
as int is good and marking it invalid is bad. :)
llvm-svn: 74266
nested name specifiers. Now we emit stuff like:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
instead of:
t.cpp:8:16: error: invalid token after top level declarator
static foo::X P;
^
This is inspired by a really awful error message I got from
g++ when I misspelt diag::kind as diag::Kind.
llvm-svn: 69086
that I noticed working on other things.
Instead of emitting:
t2.cc:1:8: error: use of undeclared identifier 'g'
int x(*g);
^
t2.cc:1:10: error: expected ')'
int x(*g);
^
t2.cc:1:6: note: to match this '('
int x(*g);
^
We now only emit:
t2.cc:1:7: warning: type specifier missing, defaults to 'int'
int x(*g);
^
Note that the example in SemaCXX/nested-name-spec.cpp:f4 is still
not great, we now produce both of:
void f4(undef::C); // expected-error {{use of undeclared identifier 'undef'}} \
expected-error {{variable has incomplete type 'void'}}
The second diagnostic should be silenced by something getting marked invalid.
I don't plan to fix this though.
llvm-svn: 68919
class C {
C() { }
int a;
};
C::C() : a(10) { }
We also diagnose when initializers are used on declarations that aren't constructors:
t.cpp:1:10: error: only constructors take base initializers
void f() : a(10) { }
^
Doug and/or Sebastian: I'd appreciate a review, especially the nested-name-spec test results (from the looks of it we now match gcc in that test.)
llvm-svn: 67672