The final tie breaker comparison also needs to return +/-1, or 0.
This is not a less() function.
This could cause otherwise identical super-classes to be ordered
unstably, depending on what the system qsort routine does with a bad
compare function.
llvm-svn: 149549
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling.
Patch by Sergei Larin!
llvm-svn: 149547
It could only be specified on the commandline, and wouldn't show
up as an option in the GUI or when invoked via `cmake -i` at all.
This also tells CMake that it's a BOOL, rather than "UNINITIALIZED".
llvm-svn: 149506
The CMake build already generated one. Follows clang r149497.
This brings us one step closer to compiling and configuring clang
separately from LLVM using the autoconf build, too.
(I lack the right version of autoconf et al. to regen, but it
was a simple change, so I just updated configure manually.)
llvm-svn: 149498
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
The pass pointer should never be referenced after sending it to
schedulePass(), which may delete the pass. To fix this bug I had to
clean up the design leading to more goodness.
You may notice now that any non-analysis pass is printed. So things like loop-simplify and lcssa show up, while target lib, target data, alias analysis do not show up. Normally, analysis don't mutate the IR, but you can now check this by using both -print-after and -print-before. The effects of analysis will now show up in between the two.
The llc path is still in bad shape. But I'll be improving it in my next checkin. Meanwhile, print-machineinstrs still works the same way. With print-before/after, many llc passes that were not printed before now are, some of these should be converted to analysis. A few very important passes, isel and scheduler, are not properly initialized, so not printed.
llvm-svn: 149480
This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).
llvm-svn: 149468
Changing arguments from being passed as fixed to varargs is unsafe, as
the ABI may require they be handled differently (stack vs. register, for
example).
Remove two tests which rely on the bitcast being folded into the direct
call, which is exactly the transformation that's unsafe.
llvm-svn: 149457
symbol from an assignment. In this case the symbol did not have a fragment so
MCObjectWriter::IsSymbolRefDifferenceFullyResolved() should not have been
calling IsSymbolRefDifferenceFullyResolvedImpl() with a NULL fragment and should
just have returned false in that case.
llvm-svn: 149442
This class is used to represent SubRegIndex instances instead of the raw
Record pointers that were used before.
No functional change intended.
llvm-svn: 149418
now that this handles the release / retain calls.
Adds a regression test for that bug (which is a compile-time
regression) and for the last two changes to the IntrusiveRefCntPtr,
especially tests for the memory leak due to copy construction of the
ref-counted object and ensuring that the traits are used for release /
retain calls.
llvm-svn: 149411
This removes implicit assumption about the form of MI coming into regalloc. In particular, it should be independent of ProcessImplicitDefs which will eventually become a standard part of coming out of SSA--unless we simply can eliminate IMPLICIT_DEF completely. Current unit tests expose this once I remove incidental pass ordering restrictions.
This is not a final fix. Just a temporary workaround until I figure out the right way.
llvm-svn: 149360
kicking in the big win of ConstantDataArray. As part of this, change
the implementation of GetConstantStringInfo in ValueTracking to work
with ConstantDataArray (and not ConstantArray) making it dramatically,
amazingly, more efficient in the process and renaming it to
getConstantStringInfo.
This keeps around a GetConstantStringInfo entrypoint that (grossly)
forwards to getConstantStringInfo and constructs the std::string
required, but existing clients should move over to
getConstantStringInfo instead.
llvm-svn: 149351
vectors of all one bits to be printed more cleverly in the AsmPrinter.
Unfortunately, the byte value for all one bits is the same with
-fsigned-char as the error return of '-1'. Force this to be the unsigned
byte value when returning it to avoid this problem, and update the test
case for the shiny new behavior.
Yay for building LLVM and Clang with -funsigned-char.
Chris, please review, and let me know if there is any reason to not
desire this change. It seems good on the surface, and certainly intended
based on the code written.
llvm-svn: 149299
- Don't call malloc+free in the very hot forward().
- Don't call isTiedToDefOperand().
- Don't create BitVector temporaries.
- Merge DeadRegs into KillRegs.
- Eliminate the early clobber checks, they were irrelevant to scavenging.
- Remove unnecessary code from -Asserts builds.
This speeds up ARM PEI by 3.4x and overall llc -O0 codegen time by 11%.
llvm-svn: 149189
Sometimes there is only one 'resume' instruction per function. In those
situations, we don't need a separate block for the call to _Unwind_Resume. In
fact, it adds a lot of overhead to code-gen if we do that -- especially at -O0.
If we have a single 'resume' instruction, just generate the call within that
block.
<rdar://problem/10694814>
llvm-svn: 149159
Move to a model where we build whatever branches are checked out
in the source directories. This was a bit too smart (and complicated)
in handling details best left to the user and the revision control
system.
In addition, get rid of support for llvm-gcc and building gcc as
these are no longer necessary.
llvm-svn: 149149
around within a basic block while maintaining live-intervals.
Updated ScheduleTopDownLive in MachineScheduler.cpp to use the moveInstr API
when reordering MIs.
llvm-svn: 149147
GEP instructions are there for the compiler and shouldn't really output much
code (if any at all). When a GEP is stored in the entry block, Fast ISel (for
one) will not know that it could fold it into further uses. For instance, inside
of the EH handling code. This results in a lot of unnecessary spills and loads
which bloat code and slows down pretty much everything.
<rdar://problem/10694814>
llvm-svn: 149114
mid-level constant folding APIs instead of doing its own analysis.
This makes it more general (e.g. can now share a <2 x i64> with a
<4 x i32>) and avoid duplicating a bunch of logic.
llvm-svn: 149111
Adjust an example MachObjectWriter diagnostic to use the information
to issue a better message.
Before:
LLVM ERROR: unknown ARM fixup kind!
After:
x.s:6:5: error: unsupported relocation on symbol
beq bar
^
rdar://9800182
llvm-svn: 149093