The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
llvm-svn: 88984
This patch forbids implicit conversion of DenseMap::const_iterator to
DenseMap::iterator which was possible because DenseMapIterator inherited
(publicly) from DenseMapConstIterator. Conversion the other way around is now
allowed as one may expect.
The template DenseMapConstIterator is removed and the template parameter
IsConst which specifies whether the iterator is constant is added to
DenseMapIterator.
Actually IsConst parameter is not necessary since the constness can be
determined from KeyT but this is not relevant to the fix and can be addressed
later.
Patch by Victor Zverovich!
llvm-svn: 86636
http://llvm.org/PR5184, and beef up the comments to describe what both options
do and the risks of lazy compilation in the presence of threads.
llvm-svn: 85295
being destroyed. This allows users to run global optimizations like globaldce
even after some functions have been jitted.
This patch also removes the Function* parameter to
JITEventListener::NotifyFreeingMachineCode() since it can cause that to be
called when the Function is partially destroyed. This change will be even more
helpful later when I think we'll want to allow machine code to actually outlive
its Function.
llvm-svn: 85182
compiled.
When functions are compiled, they accumulate references in the JITResolver's
stub maps. This patch removes those references when the functions are
destroyed. It's illegal to destroy a Function when any thread may still try to
call its machine code.
This patch also updates r83987 to use ValueMap instead of explicit CallbackVHs
and fixes a couple "do stuff inside assert()" bugs from r84522.
llvm-svn: 84975
even when keys get RAUWed and deleted during its lifetime. By default the keys
act like WeakVHs, but users can pass a third template parameter to configure
how updates work and whether to do anything beyond updating the map on each
action.
It's also possible to automatically acquire a lock around ValueMap updates
triggered by RAUWs and deletes, to support the ExecutionEngine.
llvm-svn: 84890
JITEmitter.
I'm gradually making Functions auto-remove themselves from the JIT when they're
destroyed. In this case, the Function needs to be removed from the JITEmitter,
but the map recording which Functions need to be removed lived behind the
JITMemoryManager interface, which made things difficult.
This patch replaces the deallocateMemForFunction(Function*) method with a pair
of methods deallocateFunctionBody(void *) and deallocateExceptionTable(void *)
corresponding to the two startFoo/endFoo pairs.
llvm-svn: 84651
mappings, which could cause errors and assert-failures. This patch fixes that,
adds a test, and refactors the global-mapping-removal code into a single place.
llvm-svn: 83678
- MingW needs -lpsapi (in ${LIBS}) linked after -lLLVMSystem.
Noticed by Ronald Pijnacker!
- Some parts of the System library must be build with exceptions on windows.
Based on a patch by Jay Foad!
llvm-svn: 83251
TypeBuilder was using a local static variable to cache its result. This made it
ignore changes in its LLVMContext argument and always return a type constructed
from the argument to the first call.
llvm-svn: 81316
equality. Prefer EXPECT_EQ(foo, Full) over EXPECT_TRUE(foo.isFullSet()) because
the former will print out the contents of the constant range that failed.
llvm-svn: 81094
This can break when there are implicit conversions from types raw_ostream
understands but std::ostream doesn't, but it increases the number of cases that
Just Work.
llvm-svn: 81093
Use CallbackVH, instead of WeakVH, to hold MDNode elements.
Use FoldingSetNode to unique MDNodes in a context.
Use CallbackVH hooks to update context's MDNodeSet appropriately.
llvm-svn: 80868
means that raw_ostream no longer has to #include <iosfwd>. Nothing in llvm
should use raw_os_ostream.h, but llvm-gcc and some unit tests do.
llvm-svn: 79886
- This also shortens the Format.h implementation, and uses the print buffer
fully (it was wasting a character).
- This manifested as llvm-test failures, because one side effect was that
raw_ostream would write garbage '\x00' values into the output stream if it
happened that the string was at the end of the buffer. This meant that grep
would report 'Binary file matches', which meant the silly pattern matching
llvm-test eventually does would fail. Cute. :)
llvm-svn: 79862
- These allow clients to make use of the extra elements in the vector which
have already been allocated, without requiring them to be value initialized.
llvm-svn: 79433
http://llvm.org/viewvc/llvm-project?view=rev&revision=78127, I'm changing the
ExecutionEngine's global mappings to hold AssertingVH<const GlobalValue>. That
way, if unregistering a mapping fails to actually unregister it, we'll get an
assert. Running the jit nightly tests didn't uncover any actual instances of
the problem.
This also uncovered the fact that AssertingVH<const X> didn't work, so I fixed
that too.
llvm-svn: 78400
- Provides static constructors for doing number to string conversions without
using temporaries.
- There are several ways to do this, I think given the Twine constraints this
is the simplest one.
- One FIXME for fast number -> hex conversion.
- Added another comment on one last major bit of perf work Twines need, which
is to make raw_svector_ostream more efficient.
llvm-svn: 77445
- Yay for '-'s and simplifications!
- I kept StringMap::GetOrCreateValue for compatibility purposes, this can
eventually go away. Likewise the StringMapEntry Create functions still follow
the old style.
- NIFC.
llvm-svn: 76888
out of memory, and also make the default memory manager allocate more memory
when it runs out.
Also, switch function stubs and global data over to using the BumpPtrAllocator.
This makes it so the JIT no longer mmaps (or the equivalent on Windows) 16 MB
of memory, and instead allocates in 512K slabs. I suspect this size could go
lower, especially on embedded platforms, now that more slabs can be allocated.
llvm-svn: 76828
malloc, so there should be no functional changes to other code.
These changes are necessary since I have plans to use this allocator in the JIT
memory manager, and it needs a special allocator.
I also added some tests which helped me pinpoint some bugs.
llvm-svn: 76825
all values belonging to the intersection will belong to the resulting range.
The former was inconsistent about that point (either way is fine, just pick
one.) This is part of PR4545.
llvm-svn: 76289
This involves temporarily hard wiring some parts to use the global context. This isn't ideal, but it's
the only way I could figure out to make this process vaguely incremental.
llvm-svn: 75445
A full set is a constant range that represents any number. If you take the
umax of that and [5, 10) you end up with [5, INT_MAX] because the values less
than 5 would be umax's against a value which is at least 5.
llvm-svn: 75372
merge the new functionality and unittests into ConstantRange. Thanks to
Nick Lewycky for pointing out that it isn't necessary to have two separate
classes here.
llvm-svn: 75191
what ConstantRange does for unsigned integers. Factor out a
common base class for common functionality.
Add some new functions for performing arithmetic on constant
ranges. Some of these are currently just stubbed out with
conservative implementations.
Add unittests for ConstantRange and ConstantSignedRange.
llvm-svn: 75177
default, this option is not enabled to support clients who rely on
this behavior.
Fixes http://llvm.org/PR4483
A patch to allocate additional memory for globals after we run out is
forthcoming.
Patch by Reid Kleckner!
llvm-svn: 75059
Also don't call finalizers for LoopPass if initialization was not called.
Add a unittest that tests that these methods are called, in the proper
order, and the correct number of times.
llvm-svn: 74438
emitted or the machine code for a function is freed. Chris mentioned that we
may also want a notification when a stub is emitted, but that'll be a future
change. I intend to use this to tell oprofile where functions are emitted and
what lines correspond to what addresses.
llvm-svn: 74157
EXPECT_EQ(expected, actual) . This will make error messages understandable as
it uses terms such as "expected" and "actual" based on the order of arguments.
llvm-svn: 73150
the comparison operators were not only unnecessary in the presence of the
implicit conversion; they caused ambiguous overload errors. So I deleted them.
llvm-svn: 70243
true), and casts make me nervous and are verbose anyway, so here's a
ConstantInt::getSigned(Ty, int64_t) method. Just overloading
ConstantInt::get() to take an int64_t too would cause ambiguous
overload errors."
Patch by Jeffrey Yasskin!
llvm-svn: 69958
Constant, MDString and MDNode which can only be used by globals with a name
that starts with "llvm." or as arguments to a function with the same naming
restriction.
llvm-svn: 68420
- The code is silly, I'm just amusing myself. Rewrite to be efficient
if you like. :)
Also, if you wish to debate the proper names of the triple components
I'm all ears.
llvm-svn: 68252
causing assertion failures in getSExtValue().
Fix it by making highWordBits actually contain what its name says,
and add some more unit-tests for APInt.
This fixes PR3419.
llvm-svn: 63107
The way this worked before was to test APInt by running
"lli -force-interpreter=true" knowing the lli uses APInt under the hood to
store its values. Now, we test APInt directly.
llvm-svn: 62514
StringMapEntryInitializer classes. Leave it for the compiler to figure out what
the type is and what "0" should be transformed into.
* Un-disable the unit tests which test the StringMapEntryInitializer class.
llvm-svn: 61922
* Added the first LLVM unittest -- DenseMap.
* Updated mkpatch utility to include llvm/unittests dir
* Added top-level target "unittests" to run all unittests
llvm-svn: 61541