Summary:
When trying to canonicalize negative constants out of
multiplication expressions, we need to check that the
constant is not INT_MIN which cannot be negated.
Reviewers: mcrosier
Reviewed By: mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7286
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 228872
Summary:
Move calls to get_input_file and release_input_file out of
getModuleForFile(). Otherwise release_input_file may end up
unmapping a view of the file while the view is still being
used by the Module (on 32-bit hosts).
Fix for PR22482.
Test Plan: Add test using --no-map-whole-files.
Reviewers: rafael, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7539
llvm-svn: 228842
This is a union of these commits:
* R600/SI: Enable more tests for VI which need no changes
* R600/SI: Enable V_BCNT tests for VI
Differences:
- v_bcnt_..._e32 -> _e64
- s_load_dword* inline offset is in bytes instead of dwords
* R600/SI: Enable all tests for VI which use S_LOAD_DWORD
The inline offset is changed from dwords to bytes.
* R600/SI: Enable LDS tests for VI
Differences:
- the s_load_dword inline offset changed from dwords to bytes
- the tests checked very little on CI, so they have been fixed to check all
instructions that "SI" checked
* R600/SI: Enable lshr tests for VI
* R600/SI: Fix divrem64 tests
- "v_lshl_64" was missing "b" before "64"
- added VI-NOT checks
* R600/SI: Enable the SI.tid test for VI
* R600/SI: Enable the frem test for VI
Also, the frem_f64 checking is added for CI-VI.
* R600/SI: Add VI tests for rsq.clamped
llvm-svn: 228830
This patch is a follow-up of r228826 (see code-review: D7506).
Now that SimplifyCFG uses TargetTransformInfo for cost analysis, we
have to fix the cost heuristic for intrinsic calls to cttz/ctlz.
This patch defines method 'getIntrinsicCost' in BasicTTIImpl: now, BasicTTIImpl
queries TLI to check if a call to cttz/ctlz is cheap for the target.
Added test cases in Transforms/SimplifyCFG/X86 to verify that on x86,
SimplifyCFG only speculates a call to cttz/ctlz if it is cheap.
Differential Revision: http://reviews.llvm.org/D7554
llvm-svn: 228829
analysis.
We're already using TTI in SimplifyCFG, so remove the hard-baked "cheapness"
heuristic and use TTI directly. Generally NFC intended, but we're using a slightly
different heuristic now so there is a slight test churn.
Test changes:
* combine-comparisons-by-cse.ll: Removed unneeded branch check.
* 2014-08-04-muls-it.ll: Test now doesn't branch but emits muleq.
* coalesce-subregs.ll: Superfluous block check.
* 2008-01-02-hoist-fp-add.ll: fadd is safe to speculate. Change to udiv.
* PhiBlockMerge.ll: Superfluous CFG checking code. Main checks still present.
* select-gep.ll: A variable GEP is not expensive, just TCC_Basic, according to the TTI.
llvm-svn: 228826
Summary:
Currently we have Mips32 and Mips64 disassemblers and this causes the target
triple to affect the disassembly despite all the relevant information being in
the ELF header. These implementations do not need to be separate.
This patch merges them together such that the appropriate tables are checked
for the subtarget (e.g. Mips64 is checked when GP64 is enabled).
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7498
llvm-svn: 228825
A DAGRootSet models an induction variable being used in a rerollable
loop. For example:
x[i*3+0] = y1
x[i*3+1] = y2
x[i*3+2] = y3
Base instruction -> i*3
+---+----+
/ | \
ST[y1] +1 +2 <-- Roots
| |
ST[y2] ST[y3]
There may be multiple DAGRootSets, for example:
x[i*2+0] = ... (1)
x[i*2+1] = ... (1)
x[i*2+4] = ... (2)
x[i*2+5] = ... (2)
x[(i+1234)*2+5678] = ... (3)
x[(i+1234)*2+5679] = ... (3)
This concept is similar to the "Scale" member used previously, but allows
multiple independent sets of roots based off the same induction variable.
llvm-svn: 228821
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.
Also add some landingpads to invalid LLVM IR test cases that lack them.
Over-the-shoulder reviewed by David Majnemer.
llvm-svn: 228782
The isSigned argument of makeLibCall function was hard-coded to false
(unsigned). This caused zero extension on MIPS64 soft float.
As the result SingleSource/Benchmarks/Stanford/FloatMM test and
SingleSource/UnitTests/2005-07-17-INT-To-FP test failed.
The solution was to use the proper argument.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7292
llvm-svn: 228765
Simply loading or storing the frame pointer is not sufficient for
Windows targets. Instead, create a synthetic frame object that we will
lower later. References to this synthetic object will be replaced with
the correct reference to the frame address.
llvm-svn: 228748
Unless we meet an insertvalue on a path from some value to a return, that value
will be live if *any* of the return's components are live, so all of those
components must be added to the MaybeLiveUses.
Previously we were deleting arguments if sub-value 0 turned out to be dead.
llvm-svn: 228731
See full discussion in http://reviews.llvm.org/D7491.
We now hide the add-immediate and call instructions together in a
separate pseudo-op, which is tagged to define GPR3 and clobber the
call-killed registers. The PPCTLSDynamicCall pass prior to RA now
expands this op into the two separate addi and call ops, with explicit
definitions of GPR3 on both instructions, and explicit clobbers on the
call instruction. The pass is now marked as requiring and preserving
the LiveIntervals and SlotIndexes analyses, and fixes these up after
the replacement sequences are introduced.
Self-hosting has been verified on LE P8 and BE P7 with various
optimization levels, etc. It has also been verified with the
--no-tls-optimize flag workaround removed.
llvm-svn: 228725
Walk the instructions marked FrameSetup and consider any stores of XMM
registers to the stack as needing a SaveXMM opcode.
This fixes PR22521.
Differential Revision: http://reviews.llvm.org/D7527
llvm-svn: 228724
Added most of the missing vector folding patterns for AVX2 (as well as fixing the vpermpd and verpmq patterns)
Differential Revision: http://reviews.llvm.org/D7492
llvm-svn: 228688
This patch adds the complete AMD Bulldozer XOP instruction set to the memory folding pattern tables for stack folding, etc.
Note: Many of the XOP instructions have multiple table entries as it can fold loads from different sources.
Differential Revision: http://reviews.llvm.org/D7484
llvm-svn: 228685
This patch teaches X86FastISel how to select AVX instructions for scalar
float/double convert operations.
Before this patch, X86FastISel always selected legacy SSE instructions
for FPExt (from float to double) and FPTrunc (from double to float).
For example:
\code
define double @foo(float %f) {
%conv = fpext float %f to double
ret double %conv
}
\end code
Before (with -mattr=+avx -fast-isel) X86FastIsel selected a CVTSS2SDrr which is
legacy SSE:
cvtss2sd %xmm0, %xmm0
With this patch, X86FastIsel selects a VCVTSS2SDrr instead:
vcvtss2sd %xmm0, %xmm0, %xmm0
Added test fast-isel-fptrunc-fpext.ll to check both the register-register and
the register-memory float/double conversion variants.
Differential Revision: http://reviews.llvm.org/D7438
llvm-svn: 228682
This commit isn't using the correct context, and is transfoming calls
that are operands to loads rather than calls that are operands to an
icmp feeding into an assume. I've replied on the original review thread
with a very reduced test case and some thoughts on how to rework this.
llvm-svn: 228677
nodes when folding bitcasts of constants.
We can't fold things and then check after-the-fact whether it was legal.
Once we have formed the DAG node, arbitrary other nodes may have been
collapsed to it. There is no easy way to go back. Instead, we need to
test for the specific folding cases we're interested in and ensure those
are legal first.
This could in theory make this less powerful for bitcasting from an
integer to some vector type, but AFAICT, that can't actually happen in
the SDAG so its fine. Now, we *only* whitelist specific int->fp and
fp->int bitcasts for post-legalization folding. I've added the test case
from the PR.
(Also as a note, this does not appear to be in 3.6, no backport needed)
llvm-svn: 228656
Win64 has specific contraints on what valid prologues and epilogues look
like. This constraint is born from the flexibility and descriptiveness
of Win64's unwind opcodes.
Prologues previously emitted by LLVM could not be represented by the
unwind opcodes, preventing operations powered by stack unwinding to
successfully work.
Differential Revision: http://reviews.llvm.org/D7520
llvm-svn: 228641
for any padding introduced by SROA. In particular, do not emit debug info
for an alloca that represents only the padding introduced by a previous
iteration.
Fixes PR22495.
llvm-svn: 228632
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.
Part of PR22495.
llvm-svn: 228631