This patch changes GlobalISelEmitter to rank patterns similar to how the
DAG does it (ie it computes a score for a pattern and adds the added
complexity to it).
This is so that the decision tree for GISelSelector remains compatible
with that of SelectionDAG.
https://reviews.llvm.org/D43270
llvm-svn: 325401
Summary:
Apparently, we missed on constraining register classes of VReg-operands of all the instructions
built from a destination pattern but the root (top-level) one. The issue exposed itself
while selecting G_FPTOSI for armv7: the corresponding pattern generates VTOSIZS wrapped
into COPY_TO_REGCLASS, so top-level COPY_TO_REGCLASS gets properly constrained,
while nested VTOSIZS (or rather its destination virtual register to be exact) does not.
Fixing this by issuing GIR_ConstrainSelectedInstOperands for every nested GIR_BuildMI.
https://bugs.llvm.org/show_bug.cgi?id=35965
rdar://problem/36886530
Patch by Roman Tereshin
Reviewers: dsanders, qcolombet, rovka, bogner, aditya_nandakumar, volkan
Reviewed By: dsanders, qcolombet, rovka
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42565
llvm-svn: 323692
Summary:
This patch adds CustomRenderer which renders the matched
operands to the specified instruction.
Targets can enable the matching of SDNodeXForm by adding
a definition that inherits from GICustomOperandRenderer and
GISDNodeXFormEquiv as follows.
def gi_imm8 : GICustomOperandRenderer<"renderImm8”>,
GISDNodeXFormEquiv<imm8_xform>;
Custom renderer functions should be of the form:
void render(MachineInstrBuilder &MIB, const MachineInstr &I);
Reviewers: dsanders, ab, rovka
Reviewed By: dsanders
Subscribers: kristof.beyls, javed.absar, llvm-commits, mgrang, qcolombet
Differential Revision: https://reviews.llvm.org/D42012
llvm-svn: 322582
NFC for currently supported targets. This resolves a problem encountered by
targets such as RISCV that reference `Subtarget` in ImmLeaf predicates.
llvm-svn: 321176
*** Context ***
Prior to this patchw, the table generated for matching instruction was
straight forward but highly inefficient.
Basically, each pattern generates its own set of self contained checks
and actions.
E.g., TableGen generated:
// First pattern
CheckNumOperand 3
CheckOpcode G_ADD
...
Build ADDrr
// Second pattern
CheckNumOperand 3
CheckOpcode G_ADD
...
Build ADDri
// Third pattern
CheckNumOperand 3
CheckOpcode G_SUB
...
Build SUBrr
*** Problem ***
Because of that generation, a *lot* of check were redundant between each
pattern and were checked every single time until we reach the pattern
that matches.
E.g., Taking the previous table, let say we are matching a G_SUB, that
means we were going to check all the rules for G_ADD before looking at
the G_SUB rule. In particular we are going to do:
check 3 operands; PASS
check G_ADD; FAIL
; Next rule
check 3 operands; PASS (but we already knew that!)
check G_ADD; FAIL (well it is still not true)
; Next rule
check 3 operands; PASS (really!!)
check G_SUB; PASS (at last :P)
*** Proposed Solution ***
This patch introduces a concept of group of rules (GroupMatcher) that
share some predicates and only get checked once for the whole group.
This patch only creates groups with one nesting level. Conceptually
there is nothing preventing us for having deeper nest level. However,
the current implementation is not smart enough to share the recording
(aka capturing) of values. That limits its ability to do more sharing.
For the given example the current patch will generate:
// First group
CheckOpcode G_ADD
// First pattern
CheckNumOperand 3
...
Build ADDrr
// Second pattern
CheckNumOperand 3
...
Build ADDri
// Second group
CheckOpcode G_SUB
// Third pattern
CheckNumOperand 3
...
Build SUBrr
But if we allowed several nesting level, it could create a sub group
for the checknumoperand 3.
(We would need to call optimizeRules on the rules within a group.)
*** Result ***
With only one level of nesting, the instruction selection pass is up
to 4x faster. For instance, one instruction now takes 500 checks,
instead of 24k! With more nesting we could get in the tens I believe.
Differential Revision: https://reviews.llvm.org/D39034
rdar://problem/34670699
llvm-svn: 321017
This patch splits atomics out of the generic G_LOAD/G_STORE and into their own
G_ATOMIC_LOAD/G_ATOMIC_STORE. This is a pragmatic decision rather than a
necessary one. Atomic load/store has little in implementation in common with
non-atomic load/store. They tend to be handled very differently throughout the
backend. It also has the nice side-effect of slightly improving the common-case
performance at ISel since there's no longer a need for an atomicity check in the
matcher table.
All targets have been updated to remove the atomic load/store check from the
G_LOAD/G_STORE path. AArch64 has also been updated to mark
G_ATOMIC_LOAD/G_ATOMIC_STORE legal.
There is one issue with this patch though which also affects the extending loads
and truncating stores. The rules only match when an appropriate G_ANYEXT is
present in the MIR. For example,
(G_ATOMIC_STORE (G_TRUNC:s16 (G_ANYEXT:s32 (G_ATOMIC_LOAD:s16 X))))
will match but:
(G_ATOMIC_STORE (G_ATOMIC_LOAD:s16 X))
will not. This shouldn't be a problem at the moment, but as we get better at
eliminating extends/truncates we'll likely start failing to match in some
cases. The current plan is to fix this in a patch that changes the
representation of extending-load/truncating-store to allow the MMO to describe
a different type to the operation.
llvm-svn: 319691
GIM_CheckNonAtomic has been replaced by GIM_CheckAtomicOrdering to allow it to support a wider
range of orderings. This has then been used to import patterns using nodes such
as atomic_cmp_swap, atomic_swap, and atomic_load_*.
llvm-svn: 319232
Summary:
This patch adds a LLVM_ENABLE_GISEL_COV which, like LLVM_ENABLE_DAGISEL_COV,
causes TableGen to instrument the generated table to collect rule coverage
information. However, LLVM_ENABLE_GISEL_COV goes a bit further than
LLVM_ENABLE_DAGISEL_COV. The information is written to files
(${CMAKE_BINARY_DIR}/gisel-coverage-* by default). These files can then be
concatenated into ${LLVM_GISEL_COV_PREFIX}-all after which TableGen will
read this information and use it to emit warnings about untested rules.
This technique could also be used by SelectionDAG and can be further
extended to detect hot rules and give them priority over colder rules.
Usage:
* Enable LLVM_ENABLE_GISEL_COV in CMake
* Build the compiler and run some tests
* cat gisel-coverage-[0-9]* > gisel-coverage-all
* Delete lib/Target/*/*GenGlobalISel.inc*
* Build the compiler
Known issues:
* ${LLVM_GISEL_COV_PREFIX}-all must be generated as a manual
step due to a lack of a portable 'cat' command. It should be the
concatenation of all ${LLVM_GISEL_COV_PREFIX}-[0-9]* files.
* There's no mechanism to discard coverage information when the ruleset
changes
Depends on D39742
Reviewers: ab, qcolombet, t.p.northover, aditya_nandakumar, rovka
Reviewed By: rovka
Subscribers: vsk, arsenm, nhaehnle, mgorny, kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39747
llvm-svn: 318356
Allow a pattern rewriter to be installed in CodeGenDAGPatterns and use it to
correct situations where SelectionDAG and GlobalISel disagree on
representation. For example, it would rewrite:
(sextload:i32 $ptr)<<unindexedload>><<sextload>><<sextloadi16>
to:
(sext:i32 (load:i16 $ptr)<<unindexedload>>)
I'd have preferred to replace the fragments and have the expansion happen
naturally as part of PatFrag expansion but the type inferencing system can't
cope with loads of types narrower than those mentioned in register classes.
This is because the SDTCisInt's on the sext constrain both the result and
operand to the 'legal' integer types (where legal is defined as 'a register
class can contain the type') which immediately rules the narrower types out.
Several targets (those with only one legal integer type) would then go on to
crash on the SDTCisOpSmallerThanOp<> when it removes all the possible types
for the result of the extend.
Also, improve isObviouslySafeToFold() slightly to automatically return true for
neighbouring instructions. There can't be any re-ordering problems if
re-ordering isn't happenning. We'll need to improve it further to handle
sign/zero-extending loads when the extend and load aren't immediate neighbours
though.
llvm-svn: 317971
The importer will now accept nested instructions in the result pattern such as
(ADDWrr $a, (SUBWrr $b, $c)). This is only valid when the nested instruction
def's a single vreg and the parent instruction consumes a single vreg where a
nested instruction is specified. The importer will automatically create a vreg
to connect the two using the type information from the pattern. This vreg will
be constrained to the register classes given in the instruction definitions*.
* REG_SEQUENCE is explicitly rejected because of this. The definition doesn't
constrain to a register class and it therefore needs special handling.
llvm-svn: 317117
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
The previous commit failed on MSVC due to a failure to convert an
initializer_list to a std::vector. Hopefully, MSVC will accept this version.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
llvm-svn: 315887
Summary:
This includes some context-sensitivity in the MVT to LLT conversion so that
pointer types are tested correctly.
FIXME: I'm not happy with the way this is done since everything is a
special-case. I've yet to find a reasonable way to implement it.
select-load.mir fails because <1 x s64> loads in tablegen get priority over s64
loads. This is fixed in the next patch and as such they should be committed
together, I've posted them separately to help with the review.
Depends on D37456
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37457
llvm-svn: 315884
Summary:
It's possible for a ComplexPattern to be used as an operator in a match
pattern. This is used by the load/store patterns in AArch64 to name the
suboperands returned by ComplexPattern predicate so that they can be broken
apart and referenced independently in the result pattern.
This patch adds support for this in order to enable the import of load/store
patterns.
Depends on D37445
Hopefully fixed the ambiguous constructor that a large number of bots reported.
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D37456
llvm-svn: 315869
Summary:
It's possible for a ComplexPattern to be used as an operator in a match
pattern. This is used by the load/store patterns in AArch64 to name the
suboperands returned by ComplexPattern predicate so that they can be broken
apart and referenced independently in the result pattern.
This patch adds support for this in order to enable the import of load/store
patterns.
Depends on D37445
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D37456
llvm-svn: 315863
Summary:
Operand variable lookups are now performed by the RuleMatcher rather than
searching the whole matcher hierarchy for a match. This revealed a wrong-code
bug that currently affects ARM and X86 where patterns that use a variable more
than once in the match pattern will be imported but won't check that the
operands are identical. This can cause the tablegen-erated matcher to
accept matches that should be rejected.
Depends on D36569
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Subscribers: aemerson, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D36618
llvm-svn: 315780
Summary:
There's only a tablegen testcase for IntImmLeaf and not a CodeGen one
because the relevant rules are rejected for other reasons at the moment.
On AArch64, it's because there's an SDNodeXForm attached to the operand.
On X86, it's because the rule either emits multiple instructions or has
another predicate using PatFrag which cannot easily be supported at the
same time.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D36569
llvm-svn: 315761
It's rare but there are a small number of patterns like this:
(set i64:$dst, (add i64:$src1, i64:$src2))
These should be equivalent to register classes except they shouldn't check for
a specific register bank.
This doesn't occur in AArch64/ARM/X86 but does occasionally come up in other
in-tree targets such as BPF.
llvm-svn: 315226
This replaces TableGen's type inference to operate on parameterized
types instead of MVTs, and as a consequence, some interfaces have
changed:
- Uses of MVTs are replaced by ValueTypeByHwMode.
- EEVT::TypeSet is replaced by TypeSetByHwMode.
This affects the way that types and type sets are printed, and the
tests relying on that have been updated.
There are certain users of the inferred types outside of TableGen
itself, namely FastISel and GlobalISel. For those users, the way
that the types are accessed have changed. For typical scenarios,
these replacements can be used:
- TreePatternNode::getType(ResNo) -> getSimpleType(ResNo)
- TreePatternNode::hasTypeSet(ResNo) -> hasConcreteType(ResNo)
- TypeSet::isConcrete -> TypeSetByHwMode::isValueTypeByHwMode(false)
For more information, please refer to the review page.
Differential Revision: https://reviews.llvm.org/D31951
llvm-svn: 313271
This fixes a warning when there are zero defined predicates and also fixes an
unnoticed bug where the first predicate in the table was unusable.
llvm-svn: 311684
Summary:
This patch adds support for predicates on imm nodes but only for ImmLeaf and not
for PatLeaf or PatFrag and only where the value does not need to be transformed
before being rendered into the instruction.
The limitation on PatLeaf/PatFrag/SDNodeXForm is due to differences in the
necessary target-supplied C++ for GlobalISel.
Depends on D36085
The previous commit was reverted for breaking the build but this appears to have
been the recurring problem on the Windows bots with tablegen not being re-run
when llvm-tblgen is changed but the .td's aren't. If it re-occurs then forcing a
build with clean=True should fix it but this string should do this in advance:
Requires a clean build.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36086
llvm-svn: 311645
Summary:
This patch adds support for predicates on imm nodes but only for ImmLeaf and not for PatLeaf or PatFrag and only where the value does not need to be transformed before being rendered into the instruction.
The limitation on PatLeaf/PatFrag/SDNodeXForm is due to differences in the necessary target-supplied C++ for GlobalISel.
Depends on D36085
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36086
llvm-svn: 311546
Summary:
Generate the type table from the types used by a target rather than hard-coding
the union of types used by all targets.
Depends on D36084
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36085
llvm-svn: 311084
As expected, this failed on the windows bots but the instrumentation showed
something interesting. The ADD8ri and INC8r rules are never directly compared
on the windows machines. That implies that the issue lies in transitivity of
the Compare predicate. I believe I've already verified that but maybe I missed
something.
llvm-svn: 310922
Summary:
Support the case where an operand of a pattern is also the whole of the
result pattern. In this case the original result and all its uses must be
replaced by the operand. However, register class restrictions can require
a COPY. This patch handles both cases by always emitting the copy and
leaving it for the register allocator to optimize.
The previous commit failed on the windows bots and this one is likely to fail
on those same bots. However, the added instrumentation should reveal a particular
isHigherPriorityThan() evaluation which I'm expecting to expose that
these machines are weighing priority of two rules differently from the
non-windows machines.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Subscribers: javed.absar, kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36084
llvm-svn: 310919
Two of the Windows bots are failing test\CodeGen\X86\GlobalISel\select-inc.mir
which should not have been affected by the change. Reverting while I investigate.
Also reverted r310735 because it builds on r310716.
llvm-svn: 310745
Summary:
Generate the type table from the types used by a target rather than hard-coding
the union of types used by all targets.
Depends on D36084
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36085
llvm-svn: 310735
Summary:
This patch enables the import of rules containing 'imm' operands that do not
constrain the acceptable values using predicates. Support for ImmLeaf will
arrive in a later patch.
Depends on D35681
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35833
llvm-svn: 310343
Summary:
We only need to merge memory operands for instructions that access
memory. This slightly reduces the number of actions executed.
Reviewers: MatzeB, rovka, dsanders
Reviewed By: dsanders
Subscribers: aemerson, igorb, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D36151
llvm-svn: 309944
Summary:
Fix a bug discovered in an out-of-tree target where memoperands from
pseudo-instructions that weren't part of the match were being merged into the
result instructions as part of GIR_MergeMemOperands.
This bug was caused by a change to the handling of State.MIs between rules when
the state machine tables were fused into a single table. Previously, each rule
would reset State.MIs using State.MIs.resize(1) but this is no longer done, as a
result stale data is occasionally left in some elements of State.MIs. Most
opcodes aren't affected by this but GIR_MergeMemOperands merges all memoperands
from the intructions recorded in State.MIs into the result instruction.
Suppose for example, we processed but rejected the following pattern:
(signextend (load x))
at this point, State.MIs contains the signextend and the load. Now suppose we
process and accept this pattern:
(add x, y)
at this point, State.MIs contains the add as well as the (now irrelevant) load.
When GIR_MergeMemOperands is processed, the memoperands from that irrelevant
load will be merged into the result instruction even though it was not part of
the match.
Bringing back the State.MIs.resize(1) would fix the problem but it would limit
our ability to optimize the table in the future. Instead, this patch fixes the
problem by explicitly stating which instructions should be merged into the result.
There's no direct test case in this commit because a test case would be very brittle.
However, at the time of writing this should fix the failures in
http://green.lab.llvm.org/green/job/Compiler_Verifiers_GlobalISEL/ as well as a
failure in test/CodeGen/ARM/GlobalISel/arm-isel.ll when expensive checks are enabled.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Subscribers: fhahn, kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36094
llvm-svn: 309804
Summary:
Now that we have control flow in place, fuse the per-rule tables into a
single table. This is a compile-time saving at this point. However, this will
also enable the optimization of a table so that similar instructions can be
tested together, reducing the time spent on the matching the code.
This is NFC in terms of externally visible behaviour but some internals have
changed slightly. State.MIs is no longer reset between each rule that is
attempted because it's not necessary to do so. As a consequence of this the
restriction on the order that instructions are added to State.MIs has been
relaxed to only affect recorded instructions that require new elements to be
added to the vector. GIM_RecordInsn can now write to any element from 1 to
State.MIs.size() instead of just State.MIs.size().
The compile-time regressions from the last commit were caused by the ARM target
including a non-const variable (zero_reg) in the table and therefore generating
an initializer for it. That variable is now const.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35681
llvm-svn: 309264
The ARM bots have started failing and while this patch should be an improvement
for these bots, it's also the only suspect in the blamelist. Reverting while
Diana and I investigate the problem.
llvm-svn: 309111
Summary:
Now that we have control flow in place, fuse the per-rule tables into a
single table. This is a compile-time saving at this point. However, this will
also enable the optimization of a table so that similar instructions can be
tested together, reducing the time spent on the matching the code.
This is NFC in terms of externally visible behaviour but some internals have
changed slightly. State.MIs is no longer reset between each rule that is
attempted because it's not necessary to do so. As a consequence of this the
restriction on the order that instructions are added to State.MIs has been
relaxed to only affect recorded instructions that require new elements to be
added to the vector. GIM_RecordInsn can now write to any element from 1 to
State.MIs.size() instead of just State.MIs.size().
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35681
llvm-svn: 309094
Summary:
This will allow us to merge the various sub-tables into a single table. This is a
compile-time saving at this point. However, this will also enable the optimization
of a table so that similar instructions can be tested together, reducing the time
spent on the matching the code.
The bulk of this patch is a mechanical conversion to the new MatchTable object
which is responsible for tracking label definitions and filling in the index of
the jump targets. It is also responsible for nicely formatting the table.
This was necessary to support the new GIM_Try opcode which takes the index to
jump to if the match should fail. This value is unknown during table
construction and is filled in during emission. To support nesting try-blocks
(although we currently don't emit tables with nested try-blocks), GIM_Reject
has been re-introduced to explicitly exit a try-block or fail the overall match
if there are no active try-blocks.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35117
llvm-svn: 308596
In each rule, each use of ComplexPattern is assigned an element in the Renderers
array. The matcher then collects renderer functions in this array and they are
used to render instructions. This works well for a single instruction but a
bug in the allocation mechanism causes the elements to be assigned on a
per-instruction basis rather than a per-rule basis.
So in the case of:
(set GPR32:$dst, (Op complex:$src1, complex:$src2))
tablegen currently assigns elements 0 and 1 to $src1 and $src2 respectively,
but for:
(set GPR32:$dst, (Op complex:$src1, (Op complex:$src2)))
it currently assigned both $src1 and $src2 the same element (0). This results in
one complex operand being rendered twice and the other being forgotten.
This patch corrects the allocation such that $src1 and $src2 are still allocated
different elements in this case.
llvm-svn: 307646
TreePatternNode considers them to be plain integers but MachineInstr considers
them to be a distinct kind of operand.
The tweak to AArch64InstrInfo.td to produce a simple test case is a NFC for
everything except GlobalISelEmitter (confirmed by diffing the tablegenerated
files). GlobalISelEmitter is currently unable to infer the type of operands in
the Dst pattern from the operands in the Src pattern.
llvm-svn: 307634
Summary:
As of this patch, 1018 out of 3938 rules are currently imported.
Depends on D32275
Reviewers: qcolombet, kristof.beyls, rovka, t.p.northover, ab, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: dberris, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32278
llvm-svn: 307240
Summary:
Also, made a few minor tweaks to shave off a little more cumulative memory consumption:
* All rules share a single NewMIs instead of constructing their own. Only one
will end up using it.
* Use MIs.resize(1) instead of MIs.clear();MIs.push_back(I) and prevent
GIM_RecordInsn from changing MIs[0].
Depends on D33764
Reviewers: rovka, vitalybuka, ab, t.p.northover, qcolombet, aditya_nandakumar
Reviewed By: ab
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D33766
llvm-svn: 307159
Summary:
This further improves the compile-time regressions that will be caused by a
re-commit of r303259.
Also added included preliminary work in preparation for the multi-insn emitter
since I needed to change the relevant part of the API for this patch anyway.
Depends on D33758
Reviewers: rovka, vitalybuka, ab, t.p.northover, qcolombet, aditya_nandakumar
Reviewed By: ab
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D33764
llvm-svn: 307133
Summary:
Replace the matcher if-statements for each rule with a state-machine. This
significantly reduces compile time, memory allocations, and cumulative memory
allocation when compiling AArch64InstructionSelector.cpp.o after r303259 is
recommitted.
The following patches will expand on this further to fully fix the regressions.
Reviewers: rovka, ab, t.p.northover, qcolombet, aditya_nandakumar
Reviewed By: ab
Subscribers: vitalybuka, aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D33758
llvm-svn: 307079
Summary:
As part of this
* Emitted instructions now have named MachineInstr variables associated
with them. This isn't particularly important yet but it's a small step
towards multiple-insn emission.
* constrainSelectedInstRegOperands() is no longer hardcoded. It's now added
as the ConstrainOperandsToDefinitionAction() action. COPY_TO_REGCLASS uses
an alternate constraint mechanism ConstrainOperandToRegClassAction() which
supports arbitrary constraints such as that defined by COPY_TO_REGCLASS.
Reviewers: ab, qcolombet, t.p.northover, rovka, kristof.beyls, aditya_nandakumar
Reviewed By: ab
Subscribers: javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D33590
llvm-svn: 305791
Summary:
It's rare but a small number of patterns use IntInit's at the root of the match.
On X86, one such rule is enabled by the OptForSize predicate and causes the
compiler to use the smaller:
%0 = MOV32r1
instead of the usual:
%0 = MOV32ri 1
This patch adds support for matching IntInit's at the root and uses this as a
test case for the optsize attribute that was implemented in r301750
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32791
llvm-svn: 303678
It's causing some buildbots to timeout whenever tablegen needs re-compilation,
particularly those with -fsanitize=memory but not only them. A compile time
regression was expected since it triples the amount of SelectionDAG rules we
are able to import but it's currently too high.
llvm-svn: 303542
Summary:
As of this patch, 1018 out of 3938 rules are currently imported.
Depends on D32275
Reviewers: qcolombet, kristof.beyls, rovka, t.p.northover, ab, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: dberris, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32278
The previous commit failed on test-suite/Bitcode/simd_ops/AArch64_halide_runtime.bc
because isImmOperandEqual() assumed MO was a register operand and that's not
always true.
llvm-svn: 303341
Summary:
As of this patch, 1018 out of 3938 rules are currently imported.
Depends on D32275
Reviewers: qcolombet, kristof.beyls, rovka, t.p.northover, ab, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: dberris, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32278
llvm-svn: 303259