Commit Graph

49 Commits

Author SHA1 Message Date
Lei Zhang 35b685270b [mlir] Add a signedness semantics bit to IntegerType
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.

This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.

This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.

More discussions can be found at:

https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ

Differential Revision: https://reviews.llvm.org/D72533
2020-02-21 09:16:54 -05:00
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
River Riddle 4268e4f4b8 [mlir] Change the syntax of AffineMapAttr and IntegerSetAttr to avoid conflicts with function types.
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.

Reviewed By: nicolasvasilache, ftynse

Differential Revision: https://reviews.llvm.org/D72429
2020-01-13 13:24:39 -08:00
Mehdi Amini 56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
Nicolas Vasilache 218f0e611a Add syntactic sugar for strided memref parsing.
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).

The syntax is a bit more explicit than what was originally proposed and resembles:
  `memref<?x?xf32, offset: 0 strides: [?, 1]>`

Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.

This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].

The underlying implementation still uses AffineMap layout.

PiperOrigin-RevId: 272717437
2019-10-03 12:34:36 -07:00
Alex Zinenko 0126dcf1f0 Introduce support for variadic function signatures for the LLVM dialect
LLVM function type has first-class support for variadic functions.  In the
current lowering pipeline, it is emulated using an attribute on functions of
standard function type.  In LLVMFuncOp that has LLVM function type, this can be
modeled directly.  Introduce parsing support for variadic arguments to the
function and use it to support variadic function declarations in LLVMFuncOp.
Function definitions are currently not supported as that would require modeling
va_start/va_end LLVM intrinsics in the dialect and we don't yet have a
consistent story for LLVM intrinsics.

PiperOrigin-RevId: 262372651
2019-08-08 09:42:16 -07:00
Andy Davis 3df510bf42 Add parsing/printing for new affine.load and affine.store operations.
The new operations affine.load and affine.store will take composed affine maps by construction.
These operations will eventually replace load and store operations currently used in affine regions and operated on by affine transformation and analysis passes.

PiperOrigin-RevId: 254754048
2019-06-24 13:45:09 -07:00
River Riddle 6a0555a875 Refactor SplatElementsAttr to inherit from DenseElementsAttr as opposed to being a separate Attribute type. DenseElementsAttr provides a better internal representation for splat values as well as better API for accessing elements.
PiperOrigin-RevId: 253138287
2019-06-19 23:01:52 -07:00
River Riddle 1316db3baa Add support for a NoneType.
none-type ::= `none`

    The `none` type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.

--

PiperOrigin-RevId: 245599248
2019-05-06 08:19:20 -07:00
River Riddle 22ad45a7aa Add support for Unit Attributes.
A unit attribute is an attribute that represents a value of `unit` type. The
    `unit` type allows only one value forming a singleton set. This attribute value
    is used to represent attributes that only have meaning from their existence.

    One example of such an attribute could be the `swift.self` attribute. This attribute indicates that a function parameter is the self/context
    parameter. It could be represented as a boolean attribute(true or false), but a
    value of false doesn't really bring any value. The parameter either is the
    self/context or it isn't.

    ```mlir {.mlir}
    // A unit attribute defined with the `unit` value specifier.
    func @verbose_form(i1 {unitAttr : unit})

    // A unit attribute can also be defined without the `unit` value specifier.
    func @simple_form(i1 {unitAttr})
    ```

--

PiperOrigin-RevId: 245254045
2019-05-06 08:16:39 -07:00
Chris Lattner 0fb905c070 Implement basic IR support for a builtin complex<> type. As with tuples, we
have no standard ops for working with these yet, this is simply enough to
    represent and round trip them in the printer and parser.

--

PiperOrigin-RevId: 241102728
2019-03-30 11:23:39 -07:00
River Riddle 30e68230bd Add support for a standard TupleType. Though this is a standard type, it merely provides a common mechanism for representing tuples in MLIR. It is up to dialect authors to provides operations for manipulating them, e.g. extract_tuple_element.
TupleType has the following form:
   tuple-type ::= `tuple` `<` (type (`,` type)*)? `>`

Example:

// Empty tuple.
tuple<>

// Single element.
tuple<i32>

// Multi element.
tuple<i32, tuple<f32>, i16>

PiperOrigin-RevId: 239226021
2019-03-29 17:25:09 -07:00
River Riddle 755538328b Recommit: Define a AffineOps dialect as well as an AffineIfOp operation. Replace all instances of IfInst with AffineIfOp and delete IfInst.
PiperOrigin-RevId: 231342063
2019-03-29 15:59:30 -07:00
Nicolas Vasilache ae772b7965 Automated rollback of changelist 231318632.
PiperOrigin-RevId: 231327161
2019-03-29 15:42:38 -07:00
River Riddle 5ecef2b3f6 Define a AffineOps dialect as well as an AffineIfOp operation. Replace all instances of IfInst with AffineIfOp and delete IfInst.
PiperOrigin-RevId: 231318632
2019-03-29 15:42:08 -07:00
River Riddle 1210e92d86 Add asmparser/printer support for locations to make them round-trippable. Location printing is currently behind a command line flag "mlir-print-debuginfo", we can rethink this when we have a pass for stripping debug info or when we have support for printer flags.
Example inline notation:

  trailing-location ::= 'loc' '(' location ')'

  // FileLineCol Location.
  %1 = "foo"() : () -> i1 loc("mysource.cc":10:8)

  // Name Location
  return loc("foo")

  // CallSite Location
  return loc(callsite("foo" at "mysource.cc":19:9))

  // Fused Location
  /// Without metadata
  func @inline_notation() loc(fused["foo", "mysource.cc":10:8])

  /// With metadata
  return loc(fused<"myPass">["foo", "foo2"])

  // Unknown location.
  return loc(unknown)

Locations are currently only printed with inline notation at the line of each instruction. Further work is needed to allow for reference notation, e.g:
     ...
     return loc 1
   }
   ...
   loc 1 = "source.cc":10:1

PiperOrigin-RevId: 230587621
2019-03-29 15:32:49 -07:00
River Riddle 8eccc429b7 Add parser support for named type aliases.
Alias identifiers can be used in the place of the types that they alias, and are defined as:

    type-alias-def ::= '!' alias-name '=' 'type' type
    type-alias ::= '!' alias-name

Example:

    !avx.m128 = type vector<4 x f32>
    ...

    "foo"(%x) : vector<4 x f32> -> ()

    // becomes:

    "foo"(%x) : !avx.m128 -> ()

PiperOrigin-RevId: 228271372
2019-03-29 15:04:05 -07:00
River Riddle 8abc06f3d5 Implement initial support for dialect specific types.
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.

To support derived types a few hooks need to be implemented:

In the concrete type class:
    - static char typeID;
      * A unique identifier for the type used during registration.

In the Dialect:
    - typeParseHook and typePrintHook must be implemented to provide parser support.

The syntax for dialect extended types is as follows:
 dialect-type:  '!' dialect-namespace '<' '"' type-specific-data '"' '>'

The 'type-specific-data' is information used to identify different types within the dialect, e.g:
 - !tf<"variant"> // Tensor Flow Variant Type
 - !tf<"string">  // Tensor Flow String Type

TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
 of concept.

PiperOrigin-RevId: 227580052
2019-03-29 14:53:07 -07:00
Chris Lattner bbf362b784 Eliminate extfunc/cfgfunc/mlfunc as a concept, and just use 'func' instead.
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.

This is step 31/n towards merging instructions and statements.  The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.

PiperOrigin-RevId: 227540453
2019-03-29 14:51:37 -07:00
Chris Lattner aaa1d77e96 Clean up and improve the parser handling of basic block labels, now that we
have a designator.  This improves diagnostics and merges handling between CFG
and ML functions more.  This also eliminates hard coded parser knowledge of
terminator keywords, allowing dialects to define their own terminators.

PiperOrigin-RevId: 227239398
2019-03-29 14:46:13 -07:00
Chris Lattner 37579ae8c4 Introduce ^ as a basic block sigil, eliminating an ambiguity on the MLIR
syntax.

PiperOrigin-RevId: 227234174
2019-03-29 14:45:59 -07:00
Uday Bondhugula 988ce3387f Change sigil for integer set: @@ -> #
PiperOrigin-RevId: 218786684
2019-03-29 13:40:21 -07:00
Feng Liu 3d7ab2d265 Add support to opaque elements attributes
For some of the constant vector / tesor, if the compiler doesn't need to
interpret their elements content, they can be stored in this class to save the
serialize / deserialize cost.

syntax:

`opaque<` tensor-type `,` opaque-string `>`

opaque-string ::= `0x` [0-9a-fA-F]*
PiperOrigin-RevId: 218399426
2019-03-29 13:36:45 -07:00
Feng Liu 03b48999b6 Add support to constant sparse tensor / vector attribute
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.

The syntax is:

`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`

Example: a sparse tensor

sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor

[[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]

PiperOrigin-RevId: 217764319
2019-03-29 13:32:55 -07:00
Feng Liu b5b90e5465 Add support to constant dense vector/tensor attribute.
The syntax of dense vecor/tensor attribute value is

`dense<` (tensor-type | vector-type)`,` attribute-list`>`

and

attribute-list ::= `[` attribute-list (`, ` attribute-list)* `]`.

The construction of the dense vector/tensor attribute takes a vector/tensor
type and a character array as arguments. The size of the input array should be
larger than the size specified by the type argument. It also assumes the
elements of the vector or tensor have been trunked to the data type sizes in
the input character array, so it extends the trunked data to 64 bits when it is
retrieved.

PiperOrigin-RevId: 217762811
2019-03-29 13:32:41 -07:00
Feng Liu 5e3cca906a Add support to constant splat vector/tensor attribute.
This attribute represents a reference to a splat vector or tensor, where all
the elements have the same value. The syntax of the attribute is:

`splat<` (tensor-type | vector-type)`,` attribute-value `>`

PiperOrigin-RevId: 216537997
2019-03-29 13:27:05 -07:00
Chris Lattner d2d89cbc19 Rename affineint type to index type. The name 'index' may not be perfect, but is better than the old name. Here is some justification:
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul).  It has undefined width and is undefined on overflow.  They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.

2) It can be used in both cfg and ml functions, and in cfg functions.  As you mention, “symbols” are not affine, and we use affineint values for symbols.

3) Integers aren’t affine, the algorithms applied to them can be. :)

4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).

PiperOrigin-RevId: 216057974
2019-03-29 13:24:16 -07:00
Feng Liu 430172ab47 Add support to TF f32_ref type in MLIR
PiperOrigin-RevId: 214722005
2019-03-29 13:20:32 -07:00
Feng Liu 948dea045b Supports TF Complex64/Complex128 types in the tf/mlir roundtrip pass.
Alternatively, we can defined a TFComplexType with a width parameter in the
mlir, then both types can be converted to the same mlir type with different width (like IntegerType).
We chose to use a direct mapping because there are only two TF Complex types.

PiperOrigin-RevId: 213856651
2019-03-29 13:17:02 -07:00
Feng Liu 5f69643cbf Support TF Variant type in the tf/mlir roundtrip pass.
PiperOrigin-RevId: 213748573
2019-03-29 13:16:18 -07:00
Feng Liu 4bc5dc9602 Handle the TF resource data type in the TF/XLA roundtrip pass.
PiperOrigin-RevId: 213650346
2019-03-29 13:16:03 -07:00
Feng Liu 7e004efae2 Add function attributes for ExtFunction, CFGFunction and MLFunction.
PiperOrigin-RevId: 213540509
2019-03-29 13:15:35 -07:00
Chris Lattner e1257e8978 Change unranked tensor syntax from tensor<??f32> to tensor<*xf32> per
discussion on the list.

PiperOrigin-RevId: 212838226
2019-03-29 13:13:42 -07:00
Tatiana Shpeisman d32a28c520 Implement operands for the lower and upper bounds of the for statement.
This revamps implementation of the loop bounds in the ForStmt, using general representation that supports operands. The frequent case of constant bounds is supported
via special access methods.

This also includes:
- Operand iterators for the Statement class.
- OpPointer::is() method to query the class of the Operation.
- Support for the bound shorthand notation parsing and printing.
- Validity checks for the bound operands used as dim ids and symbols

I didn't mean this CL to be so large. It just happened this way, as one thing led to another.

PiperOrigin-RevId: 210204858
2019-03-29 13:05:16 -07:00
Uday Bondhugula 8a663870e8 Support for affine integer sets
- introduce affine integer sets into the IR
- parse and print affine integer sets (both inline or outlined) similar to
  affine maps
- use integer set for IfStmt's conditional, and implement parsing of IfStmt's
  conditional

- fixed an affine expr paren omission bug while one this.

TODO: parse/represent/print MLValue operands to affine integer set references.
PiperOrigin-RevId: 207779408
2019-03-29 12:56:58 -07:00
James Molloy 1e793eb8dc [mlir] Add a string type
PiperOrigin-RevId: 206977161
2019-03-29 12:52:35 -07:00
Jacques Pienaar 1015a0dded Add parsing for floating point attributes.
This is doing it in a suboptimal manner by recombining [integer period literal] into a string literal and parsing that via to_float.

PiperOrigin-RevId: 206855106
2019-03-29 12:51:12 -07:00
Jacques Pienaar 6a93e146c0 Add tf_control type and allow $ in bare-id.
* Add tf_control as primitive type;
* Allow $ in bare-id to allow attributes with $ (to make it trivially to mangle a TF attribute);

PiperOrigin-RevId: 206342642
2019-03-29 12:46:30 -07:00
Chris Lattner b67fc6c422 Implement custom parser support for operations, enhance dim/addf to use it, and add a new load op.
This regresses parser error recovery in some cases (in invalid.mlir) which I'll
consider in a follow-up patch.  The important thing in this patch is that the
parse methods in StandardOps.cpp are nice and simple.

PiperOrigin-RevId: 206023308
2019-03-29 12:43:28 -07:00
James Molloy f7f70ee691 [mlir] Implement conditional branch
This looks heavyweight but most of the code is in the massive number of operand accessors!

We need to be able to iterate over all operands to the condbr (all live-outs) but also just
the true/just the false operands too.

PiperOrigin-RevId: 205897704
2019-03-29 12:41:55 -07:00
Tatiana Shpeisman 6ada91db02 Parse ML function arguments, return statement operands, and for statement loop header.
Loop bounds and presumed to be constants for now and are stored in ForStmt as affine constant expressions.  ML function arguments, return statement operands and loop variable name are dropped for now.

PiperOrigin-RevId: 205256208
2019-03-29 12:36:20 -07:00
Uday Bondhugula 8fbaf79afb Parse affine map range sizes.
PiperOrigin-RevId: 204240947
2019-03-29 12:32:59 -07:00
Chris Lattner 9d869ea76d Add basic lexing and parsing support for SSA operands and definitions. This
isn't actually constructing IR objects yet, it is eating the tokens and
discarding them.

PiperOrigin-RevId: 203616265
2019-03-29 12:30:22 -07:00
Chris Lattner b0dabbd67f Add parsing for attributes and attibutes on operations. Add IR representation
for attributes on operations.  Split Operation out from OperationInst so it
can be shared with OperationStmt one day.

PiperOrigin-RevId: 203325366
2019-03-29 12:29:16 -07:00
Uday Bondhugula 3dc4fb6f0f Parsing support for affine maps and affine expressions
A recursive descent parser for affine maps/expressions with operator precedence and
associativity. (While on this, sketch out uniqui'ing functionality for affine maps
and affine binary op expressions (partly).)

PiperOrigin-RevId: 203222063
2019-03-29 12:28:22 -07:00
Tatiana Shpeisman 177ce7215c Basic representation and parsing of if and for statements. Loop headers and if statement conditions are not yet supported.
PiperOrigin-RevId: 203211526
2019-03-29 12:28:10 -07:00
Chris Lattner 6af866c58d Enhance the type system to support arbitrary precision integers, which are
important for low-bitwidth inference cases and hardware synthesis targets.

Rename 'int' to 'affineint' to avoid confusion between "the integers" and "the int
type".

PiperOrigin-RevId: 202751508
2019-03-29 12:27:32 -07:00
Uday Bondhugula fdf7bc4e25 [WIP] Sketching IR and parsing support for affine maps, affine expressions
Run test case:

$ mlir-opt test/IR/parser-affine-map.mlir
test/IR/parser-affine-map.mlir:3:30: error: expect '(' at start of map range
#hello_world2 (i, j) [s0] -> i+s0, j)
                             ^

PiperOrigin-RevId: 202736856
2019-03-29 12:27:20 -07:00
Chris Lattner 509da7907e Refactor information about tokens out into a new TokenKinds.def file. Use this
to share code a bit more, and fixes a diagnostic bug Uday pointed out where
parseCommaSeparatedList would print the wrong diagnostic when the end signifier
was not a ).

PiperOrigin-RevId: 202676858
2019-03-29 12:27:07 -07:00