For SK_ExtractSubvector, the default 'Ty' type is the source operand type and 'SubTy' is the destination subvector type
I got this the wrong way around when I added rL346510
llvm-svn: 346534
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Call getOperandInfo() instead of using (near) duplicated code in
LoopVectorizationCostModel::getInstructionCost().
This gets the OperandValueKind and OperandValueProperties values for a Value
passed as operand to an arithmetic instruction.
getOperandInfo() used to be a static method in TargetTransformInfo.cpp, but
is now instead a public member.
Review: Florian Hahn
https://reviews.llvm.org/D52883
llvm-svn: 343852
The optimizer is getting smarter (eg, D47986) about differentiating shuffles
based on its mask values, so we should make queries on the mask constant
operand generally available to avoid code duplication.
We'll probably use this soon in the vectorizers and instcombine (D48023 and
https://bugs.llvm.org/show_bug.cgi?id=37806).
We might clean up TTI a bit more once all of its current 'SK_*' options are
covered.
Differential Revision: https://reviews.llvm.org/D48236
llvm-svn: 335067
As discussed on PR33744, this patch relaxes ShuffleKind::SK_Alternate which requires shuffle masks to only match an alternating pattern from its 2 sources:
e.g. v4f32: <0,5,2,7> or <4,1,6,3>
This seems far too restrictive as most SIMD hardware which will implement it using a general blend/bit-select instruction, so replaces it with SK_Select, permitting elements from either source as long as they are inline:
e.g. v4f32: <0,5,2,7>, <4,1,6,3>, <0,1,6,7>, <4,1,2,3> etc.
This initial patch just updates the name and cost model shuffle mask analysis, later patch reviews will update SLP to better utilise this - it still limits itself to SK_Alternate style patterns.
Differential Revision: https://reviews.llvm.org/D47985
llvm-svn: 334513
As discussed on D47985, identity shuffle masks should probably be free.
I've limited this to the case where the input and output types all match - but we could probably accept all cases.
Differential Revision: https://reviews.llvm.org/D47986
llvm-svn: 334506
This enables us to detect more fast path sdiv cases under cost analysis.
This patch also enables us to handle non-uniform-constant pow2 cases for X86 SDIV costs.
Found while working on D46276
Future patches can then extend the vectorizers to more fully support non-uniform pow2 cases.
Differential Revision: https://reviews.llvm.org/D46637
llvm-svn: 332969
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This patch adds a new shuffle kind useful for transposing a 2xn matrix. These
transpose shuffle masks read corresponding even- or odd-numbered vector
elements from two n-dimensional source vectors and write each result into
consecutive elements of an n-dimensional destination vector. The transpose
shuffle kind is meant to model the TRN1 and TRN2 AArch64 instructions. As such,
this patch also considers transpose shuffles in the AArch64 implementation of
getShuffleCost.
Differential Revision: https://reviews.llvm.org/D45982
llvm-svn: 330941
The function getMinimumVF(ElemWidth) will return the minimum VF for
a vector with elements of size ElemWidth bits. This value will only
apply to targets for which TTI::shouldMaximizeVectorBandwidth returns
true. The value of 0 indicates that there is no minimum VF.
Differential Revision: https://reviews.llvm.org/D45271
llvm-svn: 330062
Implement TTI interface for targets to indicate that the LSR should give
priority to post-incrementing addressing modes.
Combination of patches by Sebastian Pop and Brendon Cahoon.
Differential Revision: https://reviews.llvm.org/D44758
llvm-svn: 328490
In the motivating case from PR35681 and represented by the macro-fuse-cmp test:
https://bugs.llvm.org/show_bug.cgi?id=35681
...there's a 37 -> 31 byte size win for the loop because we eliminate the big base
address offsets.
SPEC2017 on Ryzen shows no significant perf difference.
Differential Revision: https://reviews.llvm.org/D42607
llvm-svn: 324289
candidates with coldcc attribute.
This recommits r322721 reverted due to sanitizer memory leak build bot failures.
Original commit message:
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 323778
candidates with coldcc attribute.
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 322721
If after if-conversion, most of the instructions in this new BB construct a long and slow dependence chain, it may be slower than cmp/branch, even if the branch has a high miss rate, because the control dependence is transformed into data dependence, and control dependence can be speculated, and thus, the second part can execute in parallel with the first part on modern OOO processor.
This patch checks for the long dependence chain, and give up if-conversion if find one.
Differential Revision: https://reviews.llvm.org/D39352
llvm-svn: 321377
- Targets that want to support memcmp expansions now return the list of
supported load sizes.
- Expansion codegen does not assume that all power-of-two load sizes
smaller than the max load size are valid. For examples, this is not the
case for x86(32bit)+sse2.
Fixes PR34887.
llvm-svn: 316905
If particular target supports volatile memory access operations, we can
avoid AS casting to generic AS. Currently it's only enabled in NVPTX for
loads and stores that access global & shared AS.
Differential Revision: https://reviews.llvm.org/D39026
llvm-svn: 316495
Significantly reduces performancei (~30%) of gipfeli
(https://github.com/google/gipfeli)
I have not yet managed to reproduce this regression with the open-source
version of the benchmark on github, but will work with others to get a
reproducer to you later today.
llvm-svn: 315680
Recommitting r314517 with the fix for handling ConstantExpr.
Original commit message:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing
mode in the target. However, since it doesn't check its actual users, it will
return FREE even in cases where the GEP cannot be folded away as a part of
actual addressing mode. For example, if an user of the GEP is a call
instruction taking the GEP as a parameter, then the GEP may not be folded in
isel.
llvm-svn: 314923
Summary:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing mode in the target.
However, since it doesn't check its actual users, it will return FREE even in cases
where the GEP cannot be folded away as a part of actual addressing mode.
For example, if an user of the GEP is a call instruction taking the GEP as a parameter,
then the GEP may not be folded in isel.
Reviewers: hfinkel, efriedma, mcrosier, jingyue, haicheng
Reviewed By: hfinkel
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38085
llvm-svn: 314517
Summary:
Right now there are two functions with the same name, one does the work
and the other one returns true if expansion is needed. Rename
TargetTransformInfo::expandMemCmp to make it more consistent with other
members of TargetTransformInfo.
Remove the unused Instruction* parameter.
Differential Revision: https://reviews.llvm.org/D38165
llvm-svn: 314096
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
llvm-svn: 312862
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize ///< Instruction code size.
};
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;
All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.
This patch also provides a simple default implementation of getInstructionLatency.
The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:
Add more detail into this function.
Add getXXXLatency function and call it from here.
Implement target specific getInstructionLatency function.
Differential Revision: https://reviews.llvm.org/D37170
llvm-svn: 312832
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
llvm-svn: 312791
Summary:
We add the precise cache sizes and associativity for the following Intel
architectures:
- Penry
- Nehalem
- Westmere
- Sandy Bridge
- Ivy Bridge
- Haswell
- Broadwell
- Skylake
- Kabylake
Polly uses since several months a performance model for BLAS computations that
derives optimal cache and register tile sizes from cache and latency
information (based on ideas from "Analytical Modeling Is Enough for High-Performance BLIS", by Tze Meng Low published at TOMS 2016).
While bootstrapping this model, these target values have been kept in Polly.
However, as our implementation is now rather mature, it seems time to teach
LLVM itself about cache sizes.
Interestingly, L1 and L2 cache sizes are pretty constant across
micro-architectures, hence a set of architecture specific default values
seems like a good start. They can be expanded to more target specific values,
in case certain newer architectures require different values. For now a set
of Intel architectures are provided.
Just as a little teaser, for a simple gemm kernel this model allows us to
improve performance from 1.2s to 0.27s. For gemm kernels with less optimal
memory layouts even larger speedups can be reported.
Reviewers: Meinersbur, bollu, singam-sanjay, hfinkel, gareevroman, fhahn, sebpop, efriedma, asb
Reviewed By: fhahn, asb
Subscribers: lsaba, asb, pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D37051
llvm-svn: 311647
isLegalAddressingMode() has recently gained the extra optional Instruction*
parameter, and therefore it can now do the job that previously only
isFoldableMemAccess() could do.
The SystemZ implementation of isLegalAddressingMode() has gained the
functionality of checking for offsets, which used to be done with
isFoldableMemAccess().
The isFoldableMemAccess() hook has been removed everywhere.
Review: Quentin Colombet, Ulrich Weigand
https://reviews.llvm.org/D35933
llvm-svn: 310463
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
Now, getUserCost() only checks the src and dst types of EXT to decide it is free
or not. This change first checks the types, then calls isExtFreeImpl(), and
check if EXT can form ExtLoad at last. Currently, only AArch64 has customized
implementation of isExtFreeImpl() to check if EXT can be folded into its use.
Differential Revision: https://reviews.llvm.org/D34458
llvm-svn: 308076
Adds loop expansions for known-size and unknown-sized memcpy calls, allowing the
target to provide the operand types through TTI callbacks. The default values
for the TTI callbacks use int8 operand types and matches the existing behaviour
if they aren't overridden by the target.
Differential revision: https://reviews.llvm.org/D32536
llvm-svn: 307346
The changes are a result of discussion of https://reviews.llvm.org/D33685.
It solves the following problem:
1. We can inform getGEPCost about simplified indices to help it with
calculating the cost. But getGEPCost does not take into account the
context which GEPs are used in.
2. We have getUserCost which can take the context into account but we cannot
inform about simplified indices.
With the changes getUserCost will have access to additional information
as getGEPCost has.
The one parameter getUserCost is also provided.
Differential Revision: https://reviews.llvm.org/D34057
llvm-svn: 306674