When a weak reference of a lazy symbol occurs we were not correctly
updating the lazy symbol. We need to tag the existing lazy symbol
as weak and, in the case of a function symbol, give it a signature.
Without the signature we can't then create the dummy function which
is needed when an weakly undefined function is called.
We had tests for weakly referenced lazy symbols but we were only
tests in the case where the reference was seen before the lazy
symbol.
See: https://github.com/WebAssembly/wasi-libc/pull/214
Differential Revision: https://reviews.llvm.org/D85567
Include the archive name as well as the member name when an error
is encountered parsing bitcode archives.
Differential Revision: https://reviews.llvm.org/D82884
Some projects use the constructor attribute on functions that also
return values. In this case we just ignore them.
The error was reported in the libgpg-error project that marks
gpg_err_init with the `__constructor__` attribute.
Differential Revision: https://reviews.llvm.org/D81962
Context: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
This is just a first step, adding the new instruction variants while keeping the existing 32-bit functionality working.
Some of the basic load/store tests have new wasm64 versions that show that the basics of the target are working.
Further features need implementation, but these will be added in followups to keep things reviewable.
Differential Revision: https://reviews.llvm.org/D80769
When we originally wrote these tests we didn't have a stable and
fleshed out assembly format. Now we do so we should prefer that
over llvm ir for lld tests to avoid including more part of llvm
than necessary in order to run the test.
This change converts just 30 out of about 130 test files. More to
come when I have some more time.
Differential Revision: https://reviews.llvm.org/D80361
Summary:
This patch fixes a bug where initialization code for .bss segments was
emitted in the memory initialization function even though the .bss
segments were discounted in the datacount section and omitted in the
data section. This was producing invalid binaries due to out-of-bounds
segment indices on the memory.init and data.drop instructions that
were trying to operate on the nonexistent .bss segments.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80354
This is a followup to https://reviews.llvm.org/D78779.
When signatures mismatch we create set of variant symbols. Some of
the fields in these symbols were not be initialized correct.
Specifically we were seeing isUsedInRegularObj not being set correctly,
leading to the symbol not getting included in the symbol table
and a crash writing relections in --reloctable mode.
There is larger refactor due here, but this is a minimal change the
fixes the bug at hand.
Differential Revision: https://reviews.llvm.org/D79756
Summary:
The WebAssembly backend automatically lowers atomic operations and TLS
to nonatomic operations and non-TLS data when either are present and
the atomics or bulk-memory features are not present, respectively. The
resulting object is no longer thread-safe, so the linker has to be
told not to allow it to be linked into a module with shared
memory. This was previously done by disallowing the 'atomics' feature,
which prevented any objct with its atomic operations or TLS removed
from being linked with any object containing atomics or TLS, and
therefore preventing it from being linked into a module with shared
memory since shared memory requires atomics.
However, as of https://github.com/WebAssembly/threads/issues/144, the
validation rules are relaxed to allow atomic operations to validate
with unshared memories, which makes it perfectly safe to link an
object with stripped atomics and TLS with another object that still
contains TLS and atomics as long as the resulting module has an
unshared memory. To allow this kind of link, this patch disallows a
pseudo-feature 'shared-mem' rather than 'atomics' to communicate to
the linker that the object is not thread-safe. This means that the
'atomics' feature is available to accurately reflect whether or not an
object has atomics enabled.
As a drive-by tweak, this change also requires that bulk-memory be
enabled in addition to atomics in order to use shared memory. This is
because initializing shared memories requires bulk-memory operations.
Reviewers: aheejin, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79542
This change add support for defined wasm globals in the .s format,
the MC layer, and wasm-ld
Currently there is no support custom initialization and all wasm
globals are initialized to zero.
Fixes: PR45742
Differential Revision: https://reviews.llvm.org/D79137
These stub new function were not being added to the symbol table
which in turn meant that we were crashing when trying to output
relocations against them.
Differential Revision: https://reviews.llvm.org/D78779
Summary:
wasm-ld requires --shared-memory to be passed when the atomics feature
is enabled because historically atomic operations were only valid with
shared memories. This change relaxes that requirement for when
building relocatable objects because their memories are not
meaningful. This technically maintains the validity of object files
because the threads spec now allows atomic operations with unshared
memories, although we don't support that elsewhere in the tools yet.
This fixes and Emscripten build issue reported at
https://bugs.chromium.org/p/webp/issues/detail?id=463.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78072
Summary:
A previous change (53211a) had updated the argument parsing to handle
large max memories, but 4294967296 would still wrap to zero after the
options were parsed. This change updates the configuration to use a
64-bit integer to store the max memory to avoid that overflow.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77437
This matches the behaviour of the ELF driver.
Also move the `createFiles` to be `checkConfig` and report `no input
files` there. Again this is mostly to match the structure of the ELF
linker better.
Differential Revision: https://reviews.llvm.org/D76960
--no-threads is a name copied from gold.
gold has --no-thread, --thread-count and several other --thread-count-*.
There are needs to customize the number of threads (running several lld
processes concurrently or customizing the number of LTO threads).
Having a single --threads=N is a straightforward replacement of gold's
--no-threads + --thread-count.
--no-threads is used rarely. So just delete --no-threads instead of
keeping it for compatibility for a while.
If --threads= is specified (ELF,wasm; COFF /threads: is similar),
--thinlto-jobs= defaults to --threads=,
otherwise all available hardware threads are used.
There is currently no way to override a --threads={1,2,...}. It is still
a debate whether we should use --threads=all.
Reviewed By: rnk, aganea
Differential Revision: https://reviews.llvm.org/D76885
Before this patch, it wasn't possible to extend the ThinLTO threads to all SMT/CMT threads in the system. Only one thread per core was allowed, instructed by usage of llvm::heavyweight_hardware_concurrency() in the ThinLTO code. Any number passed to the LLD flag /opt:lldltojobs=..., or any other ThinLTO-specific flag, was previously interpreted in the context of llvm::heavyweight_hardware_concurrency(), which means SMT disabled.
One can now say in LLD:
/opt:lldltojobs=0 -- Use one std::thread / hardware core in the system (no SMT). Default value if flag not specified.
/opt:lldltojobs=N -- Limit usage to N threads, regardless of usage of heavyweight_hardware_concurrency().
/opt:lldltojobs=all -- Use all hardware threads in the system. Equivalent to /opt:lldltojobs=$(nproc) on Linux and /opt:lldltojobs=%NUMBER_OF_PROCESSORS% on Windows. When an affinity mask is set for the process, threads will be created only for the cores selected by the mask.
When N > number-of-hardware-threads-in-the-system, the threads in the thread pool will be dispatched equally on all CPU sockets (tested only on Windows).
When N <= number-of-hardware-threads-on-a-CPU-socket, the threads will remain on the CPU socket where the process started (only on Windows).
Differential Revision: https://reviews.llvm.org/D75153
When the debug info contains a relocation against a dead symbol, wasm-ld
may emit spurious range-list terminator entries (entries with Start==0
and End==0). This change fixes this by emitting the WasmRelocation
Addend as End value for a non-live symbol.
Reviewed by: sbc100, dblaikie
Differential Revision: https://reviews.llvm.org/D74781
Summary:
This adds a test for D76752. Now the global section comes after the
event section, and this change makes sure it is satisfied.
Reviewers: sbc100, tlively
Reviewed By: tlively
Subscribers: dschuff, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76823
When there are both strong and weak references to an undefined
symbol ensure that the strong reference prevails in the output symbol
generating the correct error.
Test case copied from lld/test/ELF/weak-and-strong-undef.s
Differential Revision: https://reviews.llvm.org/D75322
This can happen if lto::LTO::getRuntimeLibcallSymbols doesn't return
an complete/accurate list of libcalls. In this case new bitcode
object can be linked in after LTO.
For example the WebAssembly backend currently calls:
setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
But `__truncsfhf2` is not part of `getRuntimeLibcallSymbols` so if
this symbol is generated during LTO the link will currently fail.
Without this change the linker crashes because the bitcode symbol
makes it all the way to the output phase.
See: https://bugs.llvm.org/show_bug.cgi?id=44353
Differential Revision: https://reviews.llvm.org/D71632
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
This is a reland of rG3a05c3969c18 with fixes for the expensive-checks
and Windows builds
Differential Revision: https://reviews.llvm.org/D71681
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
Differential Revision: https://reviews.llvm.org/D71681
This is equivalent to the existing `import_name` and `import_module`
attributes which control the import names in the final wasm binary
produced by lld.
This maps the existing
This attribute currently requires a string rather than using the
symbol name for a couple of reasons:
1. Avoid confusion with static and dynamic linking which is
based on symbol name. Exporting a function from a wasm module using
this directive is orthogonal to both static and dynamic linking.
2. Avoids name mangling.
Differential Revision: https://reviews.llvm.org/D70520
When statically linking PIC code we create an internalized __memory_base
so that memory-base-relative relocation work correctly. The value of
this global should be zero, and not the globalBase since the globalBase
offset is already taken into account by getVirtualAddress.
Fixes: https://github.com/emscripten-core/emscripten/issues/9013
Differential Revision: https://reviews.llvm.org/D69600
Summary:
Also changes the wasm YAML format to reflect the possibility of having
multiple return types and to put the returns after the params for
consistency with the binary encoding.
Reviewers: aheejin, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, arphaman, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69156
llvm-svn: 375283
Undefined symbols in WebAssembly can come with custom `import-module`
and `import-field` attributes. However when reading symbols from
bitcode object files during LTO those curtom attributes are not
available.
Once we compile the LTO object and read in the symbol table from the
object file we have access to these custom attributes. In this case,
when undefined symbols are added and a symbol already exists in the
SymbolTable we can't simple return it, we may need to update the
symbol's attributes.
Fixes: PR43211
Differential Revision: https://reviews.llvm.org/D68959
llvm-svn: 375081
Fix a bug where were not handling relocations against weakly undefined
data symbol. Add a test for this case. Also ensure that the weak
references to data symbols are not pulled in from archive files by
default (but are if `-u <name>` is added to the command line).
Fixes: PR43696
Differential Revision: https://reviews.llvm.org/D69073
llvm-svn: 375077
Summary:
WebAssembly memories are zero-initialized, so when module does not
import its memory initializing .bss sections is guaranteed to be a
no-op. To reduce binary size and initialization time, .bss sections
are simply not emitted into the final binary unless the memory is
imported.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68965
llvm-svn: 374940