(e.g. ${var%S}). this might already be the default if your variable is of an aggregate type
new feature: synthetic filters. you can restrict the number of children for your variables to only a meaningful subset
- the restricted list of children obeys the typical rules (e.g. summaries prevail over children)
- one-line summaries show only the filtered (synthetic) children, if you type an expanded summary string, or you use Python scripts, all the real children are accessible
- to provide a synthetic children list use the "type synth add" command, as in:
type synth add foo_type --child varA --child varB[0] --child varC->packet->flags[1-4]
(you can use ., ->, single-item array operator [N] and bitfield operator [N-M]; array slice access is not supported, giving simplified names to expression paths is not supported)
- a new -S option to frame variable and target variable lets you override synthetic children and instead show real ones
llvm-svn: 135731
type summary list now supports a -w flag with a regular expression argument that filters categories to only include the ones matching the regex
in category and summary listings, categories are printed in a meaningful order:
- enabled ones first, in the order in which they are searched for summaries
- disabled ones, in an unspecified order
type summary list by default only expands non-empty enabled categories. to obtain a full listing, you must use the -w flag giving a "match-all" regex
llvm-svn: 135529
Used hand merge to apply the diffs. I did not apply the diffs for FormatManager.h and
the diffs for memberwise initialization for ValueObject.cpp because they changed since.
I will ask my colleague to apply them later.
llvm-svn: 135508
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
The "systemwide summaries" feature has been removed and replaced with a more general and
powerful mechanism.
Categories:
- summaries can now be grouped into buckets, called "categories" (it is expected that categories
correspond to libraries and/or runtime environments)
- to add a summary to a category, you can use the -w option to type summary add and give
a category name (e.g. type summary add -f "foo" foo_t -w foo_category)
- categories are by default disabled, which means LLDB will not look into them for summaries,
to enable a category use "type category enable". once a category is enabled, LLDB will
look into that category for summaries. the rules are quite trivial: every enabled category
is searched for an exact match. if an exact match is nowhere to be found, any match is
searched for in every enabled category (whether it involves cascading, going to base classes,
...). categories are searched into the order in which they were enabled (the most recently
enabled category first, then the second most and so on..)
- by default, most commands that deal with summaries, use a category named "default" if no
explicit -w parameter is given (the observable behavior of LLDB should not change when
categories are not explicitly used)
- the systemwide summaries are now part of a "system" category
llvm-svn: 135463
- help type summary add now gives some hints on how to use it
frame variable and target variable now have a --no-summary-depth (-Y) option:
- simply using -Y without an argument will skip one level of summaries, i.e.
your aggregate types will expand their children and display no summary, even
if they have one. children will behave normally
- using -Y<int>, as in -Y4, -Y7, ..., will skip as many levels of summaries as
given by the <int> parameter (obviously, -Y and -Y1 are the same thing). children
beneath the given depth level will behave normally
-Y0 is the same as omitting the --no-summary-depth parameter entirely
This option replaces the defined-but-unimplemented --no-summary
llvm-svn: 135336
- Summaries for char*, const char* and char[] are loaded at startup as
system-wide summaries. This means you cannot delete them unless you use
the -a option to type summary delete/clear
- You can add your own system-wide summaries by using the -w option to type
summary add
Several code improvements for the Python summaries feature
llvm-svn: 135326
- you can use a Python script to write a summary string for data-types, in one of
three ways:
-P option and typing the script a line at a time
-s option and passing a one-line Python script
-F option and passing the name of a Python function
these options all work for the "type summary add" command
your Python code (if provided through -P or -s) is wrapped in a function
that accepts two parameters: valobj (a ValueObject) and dict (an LLDB
internal dictionary object). if you use -F and give a function name,
you're expected to define the function on your own and with the right
prototype. your function, however defined, must return a Python string
- test case for the Python summary feature
- a few quirks:
Python summaries cannot have names, and cannot use regex as type names
both issues will be fixed ASAP
major redesign of type summary code:
- type summary working with strings and type summary working with Python code
are two classes, with a common base class SummaryFormat
- SummaryFormat classes now are able to actively format objects rather than
just aggregating data
- cleaner code to print descriptions for summaries
the public API now exports a method to easily navigate a ValueObject hierarchy
New InputReaderEZ and PriorityPointerPair classes
Several minor fixes and improvements
llvm-svn: 135238
Also made:
(lldb) !<NUM>
(lldb) !-<NUM>
(lldb) !!
work with the history. For added benefit:
(lldb) !<NUM><TAB>
will insert the command at position <NUM> in the history into the command line to be edited.
This is only partial, I still need to sync up editline's history list with the one kept by the interpreter.
llvm-svn: 134955
- a new --name option for "type summary add" lets you give a name to a summary
- a new --summary option for "frame variable" lets you bind a named summary to one or more variables
${var%s} now works for printing the value of 0-terminated CStrings
type format test case now tests for cascading
- this is disabled on GCC because GCC may end up stripping typedef chains, basically breaking cascading
new design for the FormatNavigator class
new template class CleanUp2 meant to support cleanup routines with 1 additional parameter beyond resource handle
llvm-svn: 134943
use lldb_private::Target::ReadMemory(...) to allow constant strings
to be displayed in global variables prior on in between process
execution.
Centralized the variable declaration dumping into:
bool
Variable::DumpDeclaration (Stream *s, bool show_fullpaths, bool show_module);
Fixed an issue if you used "target variable --regex <regex>" where the
variable name would not be displayed, but the regular expression would.
Fixed an issue when viewing global variables through "target variable"
might not display correctly when doing DWARF in object files.
llvm-svn: 134878
Made it so that you can create synthetic children of array
value objects. This is for creating array members when the
array index is out of range. This comes in handy when you have
a structure definition like:
struct Collection
{
uint32_t count;
Item array[0];
};
"array" has 1 item, but many times in practice there are more
items in "item_array".
This allows you to do:
(lldb) target variable g_collection.array[3]
To implement this, the get child at index has been modified
to have a "ignore_array_bounds" boolean that can be set to true.
llvm-svn: 134846
group class: OptionGroupVariable. It gets initialized with
a boolean that indicates if the frame specific options are
included so that this can be used in both the "frame variable"
and "target variable" commands.
Removed the global functionality from the "frame variable"
command. Users should switch to using the "target variable"
command.
llvm-svn: 134594
variables prior to running your binary. Zero filled sections now get
section data correctly filled with zeroes when Target::ReadMemory
reads from the object file section data.
Added new option groups and option values for file lists. I still need
to hook up all of the options to "target variable" to allow more complete
introspection by file and shlib.
Added the ability for ValueObjectVariable objects to be created with
only the target as the execution context. This allows them to be read
from the object files through Target::ReadMemory(...).
Added a "virtual Module * GetModule()" function to the ValueObject
class. By default it will look to the parent variable object and
return its module. The module is needed when we have global variables
that have file addresses (virtual addresses that are specific to
module object files) and in turn allows global variables to be displayed
prior to running.
Removed all of the unused proxy object support that bit rotted in
lldb_private::Value.
Replaced a lot of places that used "FileSpec::Compare (lhs, rhs) == 0" code
with the more efficient "FileSpec::Equal (lhs, rhs)".
Improved logging in GDB remote plug-in.
llvm-svn: 134579
_only_ in the resulting stream, not in the error objects (lldb_private::Error).
lldb_private::Error objects should always just have an error string with no
terminating newline characters or periods.
Fixed an issue with GDB remote packet detection that could end up deadlocking
if a full packet wasn't received in one chunk. Also modified the packet
checking function to properly toss one or more bytes when it detects bad
data.
llvm-svn: 134357
- type names can now be regular expressions (exact matching is done first, and is faster)
- integral (and floating) types can be printed as bitfields, i.e. ${var[low-high]} will extract bits low thru high of the value and print them
- array subscripts are supported, both for arrays and for pointers. the syntax is ${*var[low-high]}, or ${*var[]} to print the whole array (the latter only works for statically sized arrays)
- summary is now printed by default when a summary string references a variable. if that variable's type has no summary, value is printed instead. to force value, you can use %V as a format specifier
- basic support for ObjectiveC:
- ObjectiveC inheritance chains are now walked through
- %@ can be specified as a summary format, to print the ObjectiveC runtime description for an object
- some bug fixes
llvm-svn: 134293
implements three commands:
type summary add <format> <typename1> [<typename2> ...]
type summary delete <typename1> [<typename2> ...]
type summary list [<typename1> [<typename2>] ...]
type summary clear
This allows you to specify the default format that will be used to display
summaries for variables, shown when you use "frame variable" or "expression", or the SBValue classes.
Examples:
type summary add "x = ${var.x}" Point
type summary list
type summary add --one-liner SimpleType
llvm-svn: 134108
two:
eOptionMarkPCSourceLine = (1u << 2), // Mark the source line that contains the current PC (mixed mode only)
eOptionMarkPCAddress = (1u << 3) // Mark the disassembly line the contains the PC
This allows mixed mode to show the line that contains the current PC, and it
allows us to mark the PC address in the disassembly if desired. Having these
be separate gives more control on the disassembly output. SBFrame::Disassemble()
doesn't enable any of these options.
llvm-svn: 134019
the FormatManager class. Modified the format arguments in any commands to be
able to use a single character format, or a full format name, or a partial
format name if no full format names match.
Modified any code that was displaying formats to use the new FormatManager
calls so that our help text and errors never get out of date.
Modified the display of the "type format list" command to be a bit more
human readable by showing the format as a format string rather than the single
character format char.
llvm-svn: 133765
This commit adds a new top level command named "type". Currently this command
implements three commands:
type format add <format> <typename1> [<typename2> ...]
type format delete <typename1> [<typename2> ...]
type format list [<typename1> [<typename2>] ...]
This allows you to specify the default format that will be used to display
types when you use "frame variable" or "expression", or the SBValue classes.
Examples:
// Format uint*_t as hex
type format add x uint16_t uint32_t uint64_t
// Format intptr_t as a pointer
type format add p intptr_t
The format characters are the same as "printf" for the most part with many
additions. These format character specifiers are also used in many other
commands ("frame variable" for one). The current list of format characters
include:
a - char buffer
b - binary
B - boolean
c - char
C - printable char
d - signed decimal
e - float
f - float
g - float
i - signed decimal
I - complex integer
o - octal
O - OSType
p - pointer
s - c-string
u - unsigned decimal
x - hex
X - complex float
y - bytes
Y - bytes with ASCII
llvm-svn: 133728
This us useful because sometomes you have to show a single character as: 'a'
(using eFormatChar) and other times you might have an array of single
charcters for display as: 'a' 'b' 'c', and other times you might want to
show the contents of buffer of characters that can contain non printable
chars: "\0\x22\n123".
This also fixes an issue that currently happens when you have a single character
C string (const char *a = "a"; or char b[1] = { 'b' };) that was being output
as "'a'" incorrectly due to the way the eFormatChar format output worked.
llvm-svn: 133316
not write output (prompts, instructions,etc.) if the CommandInterpreter
is in batch_mode.
Also, finish updating InputReaders to write to the asynchronous stream,
rather than using the Debugger's output file directly.
llvm-svn: 133162
the appropriate registers for arm and x86_64. The register names for the
arguments that are the size of a pointer or less are all named "arg1", "arg2",
etc. This allows you to read these registers by name:
(lldb) register read arg1 arg2 arg3
...
You can also now specify you want to see alternate register names when executing
the read register command:
(lldb) register read --alternate
(lldb) register read -A
llvm-svn: 131376
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096