Summary: This is a NFC in preparation of exporting the initial registers as part of the YAML dump
Reviewers: courbet
Reviewed By: courbet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52427
llvm-svn: 342967
In this patch, I'm adding an extra check to the Latch's terminator in llvm::UnrollRuntimeLoopRemainder,
similar to how it is already done in the llvm::UnrollLoop.
The compiler would crash if this function is called with a malformed loop.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D51486
llvm-svn: 342958
As a prerequisite to time-passes implementation which needs to time both passes
and analyses, adding instrumentation points to the Analysis Manager.
The are two functional differences between Pass and Analysis instrumentation:
- the latter does not increment pass execution counter
- it does not provide ability to skip execution of the corresponding analysis
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D51275
llvm-svn: 342778
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Summary:
Added function to set a register to a particular value + tests.
Add EFLAGS test, use new setRegTo instead of setRegToConstant.
Reviewers: courbet, javed.absar
Subscribers: llvm-commits, tschuett, mgorny
Differential Revision: https://reviews.llvm.org/D52297
llvm-svn: 342644
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Using LLVMTestingSupport in the LLVM_LINK_COMPONENTS breaks the build when
LLVM_TARGETS_TO_BUILD is set to empty.
Libraries that depend on LLVMTestingSupport need to use
target_link_libraries(<target> PRIVATE LLVMTestingSupport) instead.
This required change was already commited by r341899 to fix another build
issue.
This fixes rdar://problem/44615064.
llvm-svn: 342593
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
Add a higher performance alternative to calling resize() every time which performs a lot of clearing to zero - when we're adding a single bit most of the time this will be completely unnecessary.
Differential Revision: https://reviews.llvm.org/D52236
llvm-svn: 342535
rL342465 is breaking the MSVC buildbots, but I need to revert this dependent revision as well.
Summary:
Added function to set a register to a particular value + tests.
Add EFLAGS test, use new setRegTo instead of setRegToConstant.
Reviewers: courbet, javed.absar
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51856
llvm-svn: 342489
Summary:
Added function to set a register to a particular value + tests.
Add EFLAGS test, use new setRegTo instead of setRegToConstant.
Reviewers: courbet, javed.absar
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51856
llvm-svn: 342466
Add support mips64(el)-linux-gnuabin32 triples, and set them to N32.
Debian architecture name mipsn32/mipsn32el are also added. Set
UseIntegratedAssembler for N32 if we can detect it.
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D51408
llvm-svn: 342416
Create a temporary file in the system temporary directory instead of creating a
file in the current directory, which may be not writable. (Fix for an issue
introduced in r342283.)
llvm-svn: 342386
Summary: This will be useful to generate many configurations and test instruction regimes (NaN, Inf, subnormal, normal).
Reviewers: courbet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51858
llvm-svn: 342369
Before this fix, multiple invocations of testRoundTrip will create multiple
writers which share the same file as output destination. That could introduce
filesystem race issue when multiple subtests are executed concurrently. This
patch assign writers with different files as their output destinations.
llvm-svn: 342301
The patch saves a function offset table which maps function name index to the
offset of its function profile to the start of the binary profile. By using
the function offset table, for those function profiles which will not be used
when compiling a module, the profile reader does't have to read them. For
profile size around 10~20M, it saves ~10% compile time.
Differential Revision: https://reviews.llvm.org/D51863
llvm-svn: 342283
Using llvm::getInputFileDirectory() in unit tests is discouraged, so require an explicit opt-in.
This way, cmake also writes ~60 fewer unused files to disk.
Differential Revision: https://reviews.llvm.org/D52095
llvm-svn: 342248
Summary:
The hash computed for an ArrayType was different when first constructed
versus when later profiled due to the constructor default argument, and
we were not tracking constructor / destructor variant as part of the
mangled name AST, leading to incorrect equivalences.
Reviewers: erik.pilkington
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51463
llvm-svn: 342166
Summary:
The snippet-generation part goes to the SnippetGenerator class.
This will allow benchmarking arbitrary code (see PR38437).
Reviewers: gchatelet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51979
llvm-svn: 342117
construction, a new convenience lookup method, and add-to layer methods.
ExecutionSession now creates a special 'main' JITDylib upon construction. All
subsequently created JITDylibs are added to the main JITDylib's search order by
default (controlled by the AddToMainDylibSearchOrder parameter to
ExecutionSession::createDylib). The main JITDylib's search order will be used in
the future to properly handle cross-JITDylib weak symbols, with the first
definition in this search order selected.
This commit also adds a new ExecutionSession::lookup convenience method that
performs a blocking lookup using the main JITDylib's search order, as this will
be a very common operation for clients.
Finally, new convenience overloads of IRLayer and ObjectLayer's add methods are
introduced that add the given program representations to the main dylib, which
is likely to be the common case.
llvm-svn: 342086
The previous implementation traversed all loop blocks and bailed if one
was not a latch block. Since we are only interested in latch blocks, we
should only traverse those.
llvm-svn: 341926
Summary:
This more correctly reflects the data written by the FDR mode runtime.
This is a continuation of the work in D50441.
Reviewers: mboerger, eizan
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51911
llvm-svn: 341905
Summary:
In this change, we implement a `BlockPrinter` which orders records in a
Block that's been indexed by the `BlockIndexer`. This is used in the
`llvm-xray fdr-dump` tool which ties together the various types and
utilities we've been working on, to allow for inspection of XRay FDR
mode traces both with and without verification.
This change is the final step of the refactoring of D50441.
Reviewers: mboerger, eizan
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51846
llvm-svn: 341887
Summary:
End goal is to update MemorySSA in all loop passes. LoopUnswitch clones all blocks in a loop. SimpleLoopUnswitch clones some blocks. LoopRotate clones some instructions.
Some of these loop passes also make CFG changes.
This is an API based on what I found needed in LoopUnswitch, SimpleLoopUnswitch, LoopRotate, LoopInstSimplify, LoopSimplifyCFG.
Adding dependent patches using this API for context.
Reviewers: george.burgess.iv, dberlin
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45299
llvm-svn: 341855