When -forder-file-instrumentation is on, we pass llvm flag to enable the order file instrumentation pass.
https://reviews.llvm.org/D58751
llvm-svn: 355333
Summary:
Add an option to initialize automatic variables with either a pattern or with
zeroes. The default is still that automatic variables are uninitialized. Also
add attributes to request uninitialized on a per-variable basis, mainly to disable
initialization of large stack arrays when deemed too expensive.
This isn't meant to change the semantics of C and C++. Rather, it's meant to be
a last-resort when programmers inadvertently have some undefined behavior in
their code. This patch aims to make undefined behavior hurt less, which
security-minded people will be very happy about. Notably, this means that
there's no inadvertent information leak when:
- The compiler re-uses stack slots, and a value is used uninitialized.
- The compiler re-uses a register, and a value is used uninitialized.
- Stack structs / arrays / unions with padding are copied.
This patch only addresses stack and register information leaks. There's many
more infoleaks that we could address, and much more undefined behavior that
could be tamed. Let's keep this patch focused, and I'm happy to address related
issues elsewhere.
To keep the patch simple, only some `undef` is removed for now, see
`replaceUndef`. The padding-related infoleaks are therefore not all gone yet.
This will be addressed in a follow-up, mainly because addressing padding-related
leaks should be a stand-alone option which is implied by variable
initialization.
There are three options when it comes to automatic variable initialization:
0. Uninitialized
This is C and C++'s default. It's not changing. Depending on code
generation, a programmer who runs into undefined behavior by using an
uninialized automatic variable may observe any previous value (including
program secrets), or any value which the compiler saw fit to materialize on
the stack or in a register (this could be to synthesize an immediate, to
refer to code or data locations, to generate cookies, etc).
1. Pattern initialization
This is the recommended initialization approach. Pattern initialization's
goal is to initialize automatic variables with values which will likely
transform logic bugs into crashes down the line, are easily recognizable in
a crash dump, without being values which programmers can rely on for useful
program semantics. At the same time, pattern initialization tries to
generate code which will optimize well. You'll find the following details in
`patternFor`:
- Integers are initialized with repeated 0xAA bytes (infinite scream).
- Vectors of integers are also initialized with infinite scream.
- Pointers are initialized with infinite scream on 64-bit platforms because
it's an unmappable pointer value on architectures I'm aware of. Pointers
are initialize to 0x000000AA (small scream) on 32-bit platforms because
32-bit platforms don't consistently offer unmappable pages. When they do
it's usually the zero page. As people try this out, I expect that we'll
want to allow different platforms to customize this, let's do so later.
- Vectors of pointers are initialized the same way pointers are.
- Floating point values and vectors are initialized with a negative quiet
NaN with repeated 0xFF payload (e.g. 0xffffffff and 0xffffffffffffffff).
NaNs are nice (here, anways) because they propagate on arithmetic, making
it more likely that entire computations become NaN when a single
uninitialized value sneaks in.
- Arrays are initialized to their homogeneous elements' initialization
value, repeated. Stack-based Variable-Length Arrays (VLAs) are
runtime-initialized to the allocated size (no effort is made for negative
size, but zero-sized VLAs are untouched even if technically undefined).
- Structs are initialized to their heterogeneous element's initialization
values. Zero-size structs are initialized as 0xAA since they're allocated
a single byte.
- Unions are initialized using the initialization for the largest member of
the union.
Expect the values used for pattern initialization to change over time, as we
refine heuristics (both for performance and security). The goal is truly to
avoid injecting semantics into undefined behavior, and we should be
comfortable changing these values when there's a worthwhile point in doing
so.
Why so much infinite scream? Repeated byte patterns tend to be easy to
synthesize on most architectures, and otherwise memset is usually very
efficient. For values which aren't entirely repeated byte patterns, LLVM
will often generate code which does memset + a few stores.
2. Zero initialization
Zero initialize all values. This has the unfortunate side-effect of
providing semantics to otherwise undefined behavior, programs therefore
might start to rely on this behavior, and that's sad. However, some
programmers believe that pattern initialization is too expensive for them,
and data might show that they're right. The only way to make these
programmers wrong is to offer zero-initialization as an option, figure out
where they are right, and optimize the compiler into submission. Until the
compiler provides acceptable performance for all security-minded code, zero
initialization is a useful (if blunt) tool.
I've been asked for a fourth initialization option: user-provided byte value.
This might be useful, and can easily be added later.
Why is an out-of band initialization mecanism desired? We could instead use
-Wuninitialized! Indeed we could, but then we're forcing the programmer to
provide semantics for something which doesn't actually have any (it's
uninitialized!). It's then unclear whether `int derp = 0;` lends meaning to `0`,
or whether it's just there to shut that warning up. It's also way easier to use
a compiler flag than it is to manually and intelligently initialize all values
in a program.
Why not just rely on static analysis? Because it cannot reason about all dynamic
code paths effectively, and it has false positives. It's a great tool, could get
even better, but it's simply incapable of catching all uses of uninitialized
values.
Why not just rely on memory sanitizer? Because it's not universally available,
has a 3x performance cost, and shouldn't be deployed in production. Again, it's
a great tool, it'll find the dynamic uses of uninitialized variables that your
test coverage hits, but it won't find the ones that you encounter in production.
What's the performance like? Not too bad! Previous publications [0] have cited
2.7 to 4.5% averages. We've commmitted a few patches over the last few months to
address specific regressions, both in code size and performance. In all cases,
the optimizations are generally useful, but variable initialization benefits
from them a lot more than regular code does. We've got a handful of other
optimizations in mind, but the code is in good enough shape and has found enough
latent issues that it's a good time to get the change reviewed, checked in, and
have others kick the tires. We'll continue reducing overheads as we try this out
on diverse codebases.
Is it a good idea? Security-minded folks think so, and apparently so does the
Microsoft Visual Studio team [1] who say "Between 2017 and mid 2018, this
feature would have killed 49 MSRC cases that involved uninitialized struct data
leaking across a trust boundary. It would have also mitigated a number of bugs
involving uninitialized struct data being used directly.". They seem to use pure
zero initialization, and claim to have taken the overheads down to within noise.
Don't just trust Microsoft though, here's another relevant person asking for
this [2]. It's been proposed for GCC [3] and LLVM [4] before.
What are the caveats? A few!
- Variables declared in unreachable code, and used later, aren't initialized.
This goto, Duff's device, other objectionable uses of switch. This should
instead be a hard-error in any serious codebase.
- Volatile stack variables are still weird. That's pre-existing, it's really
the language's fault and this patch keeps it weird. We should deprecate
volatile [5].
- As noted above, padding isn't fully handled yet.
I don't think these caveats make the patch untenable because they can be
addressed separately.
Should this be on by default? Maybe, in some circumstances. It's a conversation
we can have when we've tried it out sufficiently, and we're confident that we've
eliminated enough of the overheads that most codebases would want to opt-in.
Let's keep our precious undefined behavior until that point in time.
How do I use it:
1. On the command-line:
-ftrivial-auto-var-init=uninitialized (the default)
-ftrivial-auto-var-init=pattern
-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang
2. Using an attribute:
int dont_initialize_me __attribute((uninitialized));
[0]: https://users.elis.ugent.be/~jsartor/researchDocs/OOPSLA2011Zero-submit.pdf
[1]: https://twitter.com/JosephBialek/status/1062774315098112001
[2]: https://outflux.net/slides/2018/lss/danger.pdf
[3]: https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
[4]: 776a0955ef
[5]: http://wg21.link/p1152
I've also posted an RFC to cfe-dev: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060172.html
<rdar://problem/39131435>
Reviewers: pcc, kcc, rsmith
Subscribers: JDevlieghere, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54604
llvm-svn: 349442
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
Summary:
Linux toolchain accidentally added "-u__llvm_runtime_variable" when "-fprofile-arcs -ftest-coverage", this is not added when "--coverage" option is used.
Using "-u__llvm_runtime_variable" generates an empty default.profraw file while an application built with "-fprofile-arcs -ftest-coverage" is running.
Reviewers: calixte, marco-c, sylvestre.ledru
Reviewed By: marco-c
Subscribers: vsk, cfe-commits
Differential Revision: https://reviews.llvm.org/D54195
llvm-svn: 347677
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
llvm-svn: 344199
Summary:
Previously, any instance of -fomit-frame-pointer would make it such that
-pg was an invalid flag combination. If -fno-omit-frame-pointer is
passed later on the command line (such that it actually takes effect),
-pg should be allowed.
Reviewers: nickdesaulniers
Reviewed By: nickdesaulniers
Subscribers: manojgupta, nickdesaulniers, cfe-commits, kongyi, chh, pirama
Differential Revision: https://reviews.llvm.org/D51713
llvm-svn: 342165
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in as the function attribute
"null-pointer-is-valid"="true".
This CL only adds the attribute on the function.
It also strips "nonnull" attributes from function arguments but
keeps the related warnings unchanged.
Corresponding LLVM change rL336613 already updated the
optimizations to not treat null pointer dereferencing
as undefined if the attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: jyknight
Subscribers: drinkcat, xbolva00, cfe-commits
Differential Revision: https://reviews.llvm.org/D47894
llvm-svn: 337433
This implements support for the previously ignored flag
`-falign-functions`. This allows the frontend to request alignment on
function definitions in the translation unit where they are not
explicitly requested in code. This is compatible with the GCC behaviour
and the ICC behaviour.
The scalar value passed to `-falign-functions` aligns functions to a
power-of-two boundary. If flag is used, the functions are aligned to
16-byte boundaries. If the scalar is specified, it must be an integer
less than or equal to 4096. If the value is not a power-of-two, the
driver will round it up to the nearest power of two.
llvm-svn: 330378
Summary:
"-fmerge-all-constants" is a non-conforming optimization and should not
be the default. It is also causing miscompiles when building Linux
Kernel (https://lkml.org/lkml/2018/3/20/872).
Fixes PR18538.
Reviewers: rjmccall, rsmith, chandlerc
Reviewed By: rsmith, chandlerc
Subscribers: srhines, cfe-commits
Differential Revision: https://reviews.llvm.org/D45289
llvm-svn: 329300
Summary:
Currently, assertion-disabled Clang builds emit value names when generating LLVM IR. This is controlled by the `NDEBUG` macro, and is not easily overridable. In order to get IR output containing names from a release build of Clang, the user must manually construct the CC1 invocation w/o the `-discard-value-names` option. This is less than ideal.
For example, Godbolt uses a release build of Clang, and so when asked to emit LLVM IR the result lacks names, making it harder to read. Manually invoking CC1 on Compiler Explorer is not feasible.
This patch adds the driver options `-fdiscard-value-names` and `-fno-discard-value-names` which allow the user to override the default behavior. If neither is specified, the old behavior remains.
Reviewers: erichkeane, aaron.ballman, lebedev.ri
Reviewed By: aaron.ballman
Subscribers: bogner, cfe-commits
Differential Revision: https://reviews.llvm.org/D42887
llvm-svn: 324498
Cf-protection is a target independent flag that instructs the back-end to instrument control flow mechanisms like: Branch, Return, etc.
For example in X86 this flag will be used to instrument Indirect Branch Tracking instructions.
Differential Revision: https://reviews.llvm.org/D40478
Change-Id: I5126e766c0e6b84118cae0ee8a20fe78cc373dea
llvm-svn: 322063
Move the logic for determining the `wchar_t` type information into the
driver. Rather than passing the single bit of information of
`-fshort-wchar` indicate to the frontend the desired type of `wchar_t`
through a new `-cc1` option of `-fwchar-type` and indicate the
signedness through `-f{,no-}signed-wchar`. This replicates the current
logic which was spread throughout Basic into the
`RenderCharacterOptions`.
Most of the changes to the tests are to ensure that the frontend uses
the correct type. Add a new test set under `test/Driver/wchar_t.c` to
ensure that we calculate the proper types for the various cases.
llvm-svn: 315126
Summary: With accurate sample profile, we can do more aggressive size optimization. For some size-critical application, this can reduce the text size by 20%
Reviewers: davidxl, rsmith
Reviewed By: davidxl, rsmith
Subscribers: mehdi_amini, eraman, sanjoy, cfe-commits
Differential Revision: https://reviews.llvm.org/D37091
llvm-svn: 311707
-fslp-vectorize-aggressive and -fno-slp-vectorize-aggressive flags back
under this group and test for the warning. Document the future removal
in the ReleaseNotes.
Differential Revision: https://reviews.llvm.org/D34926
llvm-svn: 306965
basic block vectorizer. This vectorizer has had no known users for many,
many years and is completely surpassed by the normal
'-fvectorize-slp'-controlled SLP vectorizer in LLVM.
Hal proposed this back in 2014 to no objections:
http://lists.llvm.org/pipermail/llvm-dev/2014-November/079091.html
While this patch completely removes the flag, Joerg is working on
a patch that will add it back in a way that warns users and ignores the
flag in a clear and well factored way (so that we can keep doing this
going forward).
Differential Revision: https://reviews.llvm.org/D34846
llvm-svn: 306786
This is recommit of r302775, reverted in r302777 due to a fail in
clang-tidy. Original mesage is below.
Now if clang driver is given wrong arguments, in some cases it
continues execution and returns zero code. This change fixes this
behavior.
The fix revealed some errors in clang test set.
File test/Driver/gfortran.f90 added in r118203 checks forwarding
gfortran flags to GCC. Now driver reports error on this file, because
the option -working-directory implemented in clang differs from the
option with the same name implemented in gfortran, in clang the option
requires argument, in gfortran does not.
In the file test/Driver/arm-darwin-builtin.c clang is called with
options -fbuiltin-strcat and -fbuiltin-strcpy. These option were removed
in r191435 and now clang reports error on this test.
File arm-default-build-attributes.s uses option -verify, which is not
supported by driver, it is cc1 option.
Similarly, the file split-debug.h uses options -fmodules-embed-all-files
and -fmodule-format=obj, which are not supported by driver.
Other revealed errors are mainly mistypes.
Differential Revision: https://reviews.llvm.org/D33013
llvm-svn: 303756
Now if clang driver is given wrong arguments, in some cases it
continues execution and returns zero code. This change fixes this
behavior.
The fix revealed some errors in clang test set.
File test/Driver/gfortran.f90 added in r118203 checks forwarding
gfortran flags to GCC. Now driver reports error on this file, because
the option -working-directory implemented in clang differs from the
option with the same name implemented in gfortran, in clang the option
requires argument, in gfortran does not.
In the file test/Driver/arm-darwin-builtin.c clang is called with
options -fbuiltin-strcat and -fbuiltin-strcpy. These option were removed
in r191435 and now clang reports error on this test.
File arm-default-build-attributes.s uses option -verify, which is not
supported by driver, it is cc1 option.
Similarly, the file split-debug.h uses options -fmodules-embed-all-files
and -fmodule-format=obj, which are not supported by driver.
Other revealed errors are mainly mistypes.
Differential Revision: https://reviews.llvm.org/D33013
llvm-svn: 302775
This commit teaches Clang to recognize editor placeholders that are produced
when an IDE like Xcode inserts a code-completion result that includes a
placeholder. Now when the lexer sees a placeholder token, it emits an
'editor placeholder in source file' error and creates an identifier token
that represents the placeholder. The parser/sema can now recognize the
placeholders and can suppress the diagnostics related to the placeholders. This
ensures that live issues in an IDE like Xcode won't get spurious diagnostics
related to placeholders.
This commit also adds a new compiler option named '-fallow-editor-placeholders'
that silences the 'editor placeholder in source file' error. This is useful
for an IDE like Xcode as we don't want to display those errors in live issues.
rdar://31581400
Differential Revision: https://reviews.llvm.org/D32081
llvm-svn: 300667
Summary: We need to be able to disable samplepgo for specific files by supporting -fno-auto-profile and -fno-profile-sample-use
Reviewers: davidxl, dnovillo, echristo
Reviewed By: echristo
Subscribers: echristo, cfe-commits
Differential Revision: https://reviews.llvm.org/D31213
llvm-svn: 298446
Summary:
SamplePGO uses profile with debug info to collect profile. Unlike the traditional debugging purpose, sample pgo needs more accurate debug info to represent the profile. We add -femit-accurate-debug-info for this purpose. It can be combined with all debugging modes (-g, -gmlt, etc). It makes sure that the following pieces of info is always emitted:
* start line of all subprograms
* linkage name of all subprograms
* standalone subprograms (functions that has neither inlined nor been inlined)
The impact on speccpu2006 binary size (size increase comparing with -g0 binary, also includes data for -g binary, which does not change with this patch):
-gmlt(orig) -gmlt(patched) -g
433.milc 4.68% 5.40% 19.73%
444.namd 8.45% 8.93% 45.99%
447.dealII 97.43% 115.21% 374.89%
450.soplex 27.75% 31.88% 126.04%
453.povray 21.81% 26.16% 92.03%
470.lbm 0.60% 0.67% 1.96%
482.sphinx3 5.77% 6.47% 26.17%
400.perlbench 17.81% 19.43% 73.08%
401.bzip2 3.73% 3.92% 12.18%
403.gcc 31.75% 34.48% 122.75%
429.mcf 0.78% 0.88% 3.89%
445.gobmk 6.08% 7.92% 42.27%
456.hmmer 10.36% 11.25% 35.23%
458.sjeng 5.08% 5.42% 14.36%
462.libquantum 1.71% 1.96% 6.36%
464.h264ref 15.61% 16.56% 43.92%
471.omnetpp 11.93% 15.84% 60.09%
473.astar 3.11% 3.69% 14.18%
483.xalancbmk 56.29% 81.63% 353.22%
geomean 15.60% 18.30% 57.81%
Debug info size change for -gmlt binary with this patch:
433.milc 13.46%
444.namd 5.35%
447.dealII 18.21%
450.soplex 14.68%
453.povray 19.65%
470.lbm 6.03%
482.sphinx3 11.21%
400.perlbench 8.91%
401.bzip2 4.41%
403.gcc 8.56%
429.mcf 8.24%
445.gobmk 29.47%
456.hmmer 8.19%
458.sjeng 6.05%
462.libquantum 11.23%
464.h264ref 5.93%
471.omnetpp 31.89%
473.astar 16.20%
483.xalancbmk 44.62%
geomean 16.83%
Reviewers: davidxl, andreadb, rob.lougher, dblaikie, echristo
Reviewed By: dblaikie, echristo
Subscribers: hfinkel, rob.lougher, andreadb, gbedwell, cfe-commits, probinson, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25435
llvm-svn: 292458
in non-void functions that fall off at the end without returning a value when
compiling C++.
Clang uses the new compiler flag to determine when it should treat control flow
paths that fall off the end of a non-void function as unreachable. If
-fno-strict-return is on, the code generator emits the ureachable and trap
IR only when the function returns either a record type with a non-trivial
destructor or another non-trivially copyable type.
The primary goal of this flag is to avoid treating falling off the end of a
non-void function as undefined behaviour. The burden of undefined behaviour
is placed on the caller instead: if the caller ignores the returned value then
the undefined behaviour is avoided. This kind of behaviour is useful in
several cases, e.g. when compiling C code in C++ mode.
rdar://13102603
Differential Revision: https://reviews.llvm.org/D27163
llvm-svn: 290960
manager, and a code path to use it.
The option is actually a top-level option but does contain
'experimental' in the name. This is the compromise suggested by Richard
in discussions. We expect this option will be around long enough and
have enough users towards the end that it merits not being relegated to
CC1, but it still needs to be clear that this option will go away at
some point.
The backend code is a fresh codepath dedicated to handling the flow with
the new pass manager. This was also Richard's suggested code structuring
to essentially leave a clean path for development rather than carrying
complexity or idiosyncracies of how we do things just to share code with
the parts of this in common with the legacy pass manager. And it turns
out, not much is really in common even though we use the legacy pass
manager for codegen at this point.
I've switched a couple of tests to run with the new pass manager, and
they appear to work. There are still plenty of bugs that need squashing
(just with basic experiments I've found two already!) but they aren't in
this code, and the whole point is to expose the necessary hooks to start
experimenting with the pass manager in more realistic scenarios.
That said, I want to *strongly caution* anyone itching to play with
this: it is still *very shaky*. Several large components have not yet
been shaken down. For example I have bugs in both the always inliner and
inliner that I have already spotted and will be fixing independently.
Still, this is a fun milestone. =D
One thing not in this patch (but that might be very reasonable to add)
is some level of support for raw textual pass pipelines such as what
Sean had a patch for some time ago. I'm mostly interested in the more
traditional flow of getting the IR out of Clang and then running it
through opt, but I can see other use cases so someone may want to add
it.
And of course, *many* features are not yet supported!
- O1 is currently more like O2
- None of the sanitizers are wired up
- ObjC ARC optimizer isn't wired up
- ...
So plenty of stuff still lef to do!
Differential Revision: https://reviews.llvm.org/D28077
llvm-svn: 290450
We have a loop-rerolling optimization which can be enabled by using
-freroll-loops. While sometimes loops are hand-unrolled for performance
reasons, when optimizing for size, we should always undo this manual
optimization to produce smaller code (our optimizer's unroller will still
unroll the rerolled loops if it thinks that is a good idea).
llvm-svn: 283685
Clang has the default FP contraction setting of “-ffp-contract=on”, which
doesn't really mean “on” in the conventional sense of the word, but rather
really means “according to the per-statement effective value of the relevant
pragma”.
Before this patch, Clang has that pragma defaulting to “off”. Since the
“-ffp-contract=on” mode is really an AND of two booleans and the second of them
defaults to “off”, the whole thing effectively defaults to “off”. This patch
changes the default value of the pragma to “on”, thus making the default pair of
booleans (on, on) rather than (on, off). This makes FP optimization slightly
more aggressive than before when not using either “-Ofast”, “-ffast-math”, or
“-ffp-contract=fast”. Even with this patch the compiler still respects
“-ffp-contract=off”.
As per a suggestion by Steve Canon, the added code does _not_ require “-O3” or
higher. This is so as to try our best to preserve identical floating-point
results for unchanged source code compiling for an unchanged target when only
changing from any optimization level in the set (“-O0”, “-O1”, “-O2”, “-O3”) to
any other optimization level in that set. “-Os” and “-Oz” seem to be behaving
identically, i.e. should probably be considered a part of the aforementioned
set, but I have not reviewed this rigorously. “-Ofast” is explicitly _not_ a
member of that set.
Patch authored by Abe Skolnik [a.skolnik@samsung.com] and Stephen Canon [scanon@apple.com].
Differential Revision: https://reviews.llvm.org/D24481
llvm-svn: 282259
-fprofile-dir=path allows the user to specify where .gcda files should be
emitted when the program is run. In particular, this is the first flag that
causes the .gcno and .o files to have different paths, LLVM is extended to
support this. -fprofile-dir= does not change the file name in the .gcno (and
thus where lcov looks for the source) but it does change the name in the .gcda
(and thus where the runtime library writes the .gcda file). It's different from
a GCOV_PREFIX because a user can observe that the GCOV_PREFIX_STRIP will strip
paths off of -fprofile-dir= but not off of a supplied GCOV_PREFIX.
To implement this we split -coverage-file into -coverage-data-file and
-coverage-notes-file to specify the two different names. The !llvm.gcov
metadata node grows from a 2-element form {string coverage-file, node dbg.cu}
to 3-elements, {string coverage-notes-file, string coverage-data-file, node
dbg.cu}. In the 3-element form, the file name is already "mangled" with
.gcno/.gcda suffixes, while the 2-element form left that to the middle end
pass.
llvm-svn: 280306
-finline-functions and /Ob2 are currently ignored by Clang. The only way to
enable inlining is to use the global O flags, which also enable other options,
or to emit LLVM bitcode using Clang, then running opt by hand with the inline
pass.
This patch allows to simply use the -finline-functions flag (same as GCC) or
/Ob2 in clang-cl mode to enable inlining without other optimizations.
This is the first patch of a serie to improve support for the /Ob flags.
Patch by Rudy Pons <rudy.pons@ilod.org>!
Differential Revision: http://reviews.llvm.org/D20576
llvm-svn: 270609
This patch changes cc1 option for PGO profile use from
-fprofile-instr-use=<path> to -fprofile-instrument-use-path=<path>.
-fprofile-instr-use=<path> is now a driver only option.
In addition to decouple the cc1 option from the driver level option, this patch
also enables IR level profile use. cc1 option handling now reads the profile
header and sets CodeGenOpt ProfileUse (valid values are {None, Clang, LLVM}
-- this is a common enum for -fprofile-instrument={}, for the profile
instrumentation), and invoke the pipeline to enable the respective PGO use pass.
Reviewers: silvas, davidxl
Differential Revision: http://reviews.llvm.org/D17737
llvm-svn: 262515
This patch changes cc1 option -fprofile-instr-generate to an enum option
-fprofile-instrument={clang|none}. It also changes cc1 options
-fprofile-instr-generate= to -fprofile-instrument-path=.
The driver level option -fprofile-instr-generate and -fprofile-instr-generate=
remain intact. This change will pave the way to integrate new PGO
instrumentation in IR level.
Review: http://reviews.llvm.org/D16730
llvm-svn: 259811
Support for the -fno-math-builtin option was added in r186899. The codegen side
is being tested in test/CodeGen/nomathbuiltin.c. The missing part was just
passing the option through the driver.
PR26317
llvm-svn: 258814
This reverts commit r253269.
This leads to assert / segfault triggering on the following reduced example:
float foo(float U, float base, float cell) { return (U = 2 * base) - cell; }
llvm-svn: 253337
This recommits r250398 with fixes to the tests for bot failures.
Add "-target x86_64-unknown-linux" to the clang invocations that
check for the gold plugin.
llvm-svn: 250455
Rolling this back for now since there are a couple of bot failures on
the new tests I added, and I won't have a chance to look at them in detail
until later this afternoon. I think the new tests need some restrictions on
having the gold plugin available.
This reverts commit r250398.
llvm-svn: 250402
Summary:
Add clang support for -flto=thin option, which is used to set the
EmitFunctionSummary code gen option on compiles.
Add -flto=full as an alias to the existing -flto.
Add tests to check for proper overriding of -flto variants on the
command line, and convert grep tests to FileCheck.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, cfe-commits
Differential Revision: http://reviews.llvm.org/D11908
llvm-svn: 250398
This patch adds flags -fno-profile-instr-generate and
-fno-profile-instr-use, and the GCC aliases -fno-profile-generate and
-fno-profile-use.
These flags are used in situations where users need to disable profile
generation or use for specific files in a build, without affecting other
files.
llvm-svn: 244153
This seems preferable to printing two warnings per unsupported option-
one warning about not supporting it, and one about not using it.
It also makes the '-Wno-' option do what you mean.
Differential Revision: http://reviews.llvm.org/D11766
llvm-svn: 244079
This patch adds support for specifying where the profile is emitted in a
way similar to GCC. These flags are used to specify directories instead
of filenames. When -fprofile-generate=DIR is used, the compiler will
generate code to write to <DIR>/default.profraw.
The patch also adds a couple of extensions: LLVM_PROFILE_FILE can still be
used to override the directory and file name to use and -fprofile-use
accepts both directories and filenames.
To simplify the set of flags used in the backend, all the flags get
canonicalized to -fprofile-instr-{generate,use} when passed to the
backend. The decision to use a default name for the profile is done
in the driver.
llvm-svn: 241825
If the linker is gcc (the default for Generic_ELF toolchains), we end up
passing most of the arguments to the linker.
Some tests were failing to account for this in their usage of *-NOT: lines
and would fail if compiled with
-DLLVM_DEFAULT_TARGET_TRIPLE=x86_64-unknown-unknown
llvm-svn: 228902