This adds support for the interface and provides unambigious information
on the control flow as it is unconditional on any runtime values.
The code is tested through confirming that buffer-placement behaves as
expected.
Differential Revision: https://reviews.llvm.org/D87894
This crash only happens when a function pass is followed by a module
pass. In this case the splitting of the pass pipeline didn't handle
properly the verifier passes and ended up with an odd number of pass in
the pipeline, breaking an assumption of the local crash reproducer
executor and hitting an assertion.
Differential Revision: https://reviews.llvm.org/D88000
Vendor/device information are not resource limits. Moving to
target environment directly for better organization.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D87911
* Per thread https://llvm.discourse.group/t/revisiting-ownership-and-lifetime-in-the-python-bindings/1769
* Reworks contexts so it is always possible to get back to a py::object that holds the reference count for an arbitrary MlirContext.
* Retrofits some of the base classes to automatically take a reference to the context, elimintating keep_alives.
* More needs to be done, as discussed, when moving on to the operations/blocks/regions.
Differential Revision: https://reviews.llvm.org/D87886
I realized when using this that one can't get very good error messages
without an additional message attribute.
Differential Revision: https://reviews.llvm.org/D87875
constBuilderCall was not defined for TypeArrayAttr, resulting in tblgen not emitting the correct code when TypeArrayAttr is used with a default valued attribute.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D87907
Add missing operands to represent copyin with readonly modifier, copyout with zero modifier
and create with zero modifier.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87874
Following patch D87712, this patch switch AnyInteger for operands gangNum, gangStatic,
workerNum, vectoreLength and tileOperands to Index and AnyInteger.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87848
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
This op is a catch-all for creating witnesses from various random kinds
of constraints. In particular, I when dealing with extents directly,
which are of `index` type, one can directly use std ops for calculating
the predicates, and then use cstr_require for the final conversion to a
witness.
Differential Revision: https://reviews.llvm.org/D87871
- Change OpClass new method addition to find and eliminate any existing methods that
are made redundant by the newly added method, as well as detect if the newly added
method will be redundant and return nullptr in that case.
- To facilitate that, add the notion of resolved and unresolved parameters, where resolved
parameters have each parameter type known, so that redundancy checks on methods
with same name but different parameter types can be done.
- Eliminate existing code to avoid adding conflicting/redundant build methods and rely
on this new mechanism to eliminate conflicting build methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47095
Differential Revision: https://reviews.llvm.org/D87059
Add support to tile affine.for ops with parametric sizes (i.e., SSA
values). Currently supports hyper-rectangular loop nests with constant
lower bounds only. Move methods
- moveLoopBody(*)
- getTileableBands(*)
- checkTilingLegality(*)
- tilePerfectlyNested(*)
- constructTiledIndexSetHyperRect(*)
to allow reuse with constant tile size API. Add a test pass -test-affine
-parametric-tile to test parametric tiling.
Differential Revision: https://reviews.llvm.org/D87353
Add support for return values in affine.for yield along the same lines
as scf.for and affine.parallel.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D87437
Fold the operation if the source is a scalar constant or splat constant.
Update transform-patterns-matmul-to-vector.mlir because the broadcast ops are folded in the conversion.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D87703
This patch change the type of operands async, wait, numGangs, numWorkers and vectorLength from index
to AnyInteger to fit with acc.loop and the OpenACC specification.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87712
Adds a pattern that replaces a chain of two tensor_cast operations by a single tensor_cast operation if doing so will not remove constraints on the shapes.
C API test uses FileCheck comments inside C code and needs to
temporarily switch off clang-format to prevent it from messing with
FileCheck directives. A recently landed commit forgot to turn it back on
after a block of FileCheck comments. Fix that.
ConvOp vectorization supports now only convolutions of static shapes with dimensions
of size either 3(vectorized) or 1(not) as underlying vectors have to be of static
shape as well. In this commit we add support for convolutions of any size as well as
dynamic shapes by leveraging existing matmul infrastructure for tiling of both input
and kernel to sizes accepted by the previous version of ConvOp vectorization.
In the future this pass can be extended to take "tiling mask" as a user input which
will enable vectorization of user specified dimensions.
Differential Revision: https://reviews.llvm.org/D87676
This patch provides C API for MLIR affine map.
- Implement C API for AffineMap class.
- Add Utils.h to include/mlir/CAPI/, and move the definition of the CallbackOstream to Utils.h to make sure mlirAffineMapPrint work correct.
- Add TODO for exposing the C API related to AffineExpr and mutable affine map.
Differential Revision: https://reviews.llvm.org/D87617
Add missing operands to represent copin with readonly modifier, copyout with zero
modifier, create with zero modifier and default clause.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87733
Numerous MLIR functions return instances of `StringRef` to refer to a
non-owning fragment of a string (usually owned by the context). This is a
relatively simple class that is defined in LLVM. Provide a simple wrapper in
the MLIR C API that contains the pointer and length of the string fragment and
use it for Standard attribute functions that return StringRef instead of the
previous, callback-based mechanism.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D87677
Add a verifier for the loop op in the OpenACC dialect. Check basic restriction
from 2.9 Loop construct from the OpenACC 3.0 specs.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87546
This patch adds the missing print for the vector_length in the parallel operation.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87630
This add canonicalizer for
- extracting an element from a dynamic_tensor_from_elements
- propagating constant operands to the type of dynamic_tensor_from_elements
Differential Revision: https://reviews.llvm.org/D87525
When packing function results into a structure during the standard-to-llvm
dialect conversion, do not assume the conversion was successful and propagate
nullptr as error state.
Fixes PR45184.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D87605
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86811
Added support to the Std dialect cast operations to do casts in vector types when feasible.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87410
Type converter may fail and return nullptr on unconvertible types. The function
conversion did not include a check and was attempting to use a nullptr type to
construct an LLVM function, leading to a crash. Add a check and return early.
The rest of the call stack propagates errors properly.
Fixes PR47403.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D87075
This introduces a builder for the more general case that supports zero
elements (where the element type can't be inferred from the ValueRange,
since it might be empty).
Also, fix up some cases in ShapeToStandard lowering that hit this. It
happens very easily when dealing with shapes of 0-D tensors.
The SameOperandsAndResultElementType is redundant with the new
TypesMatchWith and prevented having zero elements.
Differential Revision: https://reviews.llvm.org/D87492
Addressed some CR issues pointed out in D87111. Formatting and other nits.
The original Diff D87111 - Add an option for unrolling loops up to a factor.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87313
This revision refactors and cleans up a bunch of things to simplify StructuredOpInterface
before work can proceed on Linalg on tensors:
- break out pieces of the StructuredOps trait that are part of the StructuredOpInterface,
- drop referenceIterators and referenceIndexingMaps that end up being more confusing than useful,
- drop NamedStructuredOpTrait
Previously only the input type was printed, and the parser applied it to
both input and output, creating an invalid transpose. Print and parse
both types, and verify that they match.
Differential Revision: https://reviews.llvm.org/D87462
This patch adds a new named structured op to accompany linalg.matmul and
linalg.matvec. We needed it for our codegen, so I figured it would be useful
to add it to Linalg.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D87292
Rationale:
After some discussion we decided that it is safe to assume 32-bit
indices for all subscripting in the vector dialect (it is unlikely
the dialect will be used; or even work; for such long vectors).
So rather than detecting specific situations that can exploit
32-bit indices with higher parallel SIMD, we just optimize it
by default, and let users that don't want it opt-out.
Reviewed By: nicolasvasilache, bkramer
Differential Revision: https://reviews.llvm.org/D87404
I was having a lot of trouble parsing the messages. In particular, the
messages like:
```
<stdin>:3:8: error: 'scf.if' op along control flow edge from Region #0 to scf.if source #1 type '!npcomprt.tensor' should match input #1 type 'tensor<?xindex>'
```
In particular, one thing that kept catching me was parsing the "to scf.if
source #1 type" as one thing, but really it is
"to parent results: source type #1".
Differential Revision: https://reviews.llvm.org/D87334
This commit specifies reduction dimensions for ConvOps. This prevents
running reduction loops in parallel and enables easier detection of kernel dimensions
which we will need later on.
Differential Revision: https://reviews.llvm.org/D87288
The current BufferPlacement transformation cannot handle loops properly. Buffers
passed via backedges will not be freed automatically introducing memory leaks.
This CL adds support for loops to overcome these limitations.
Differential Revision: https://reviews.llvm.org/D85513
Take advantage of the new `dynamic_tensor_from_elements` operation in `std`.
Instead of stack-allocated memory, we can now lower directly to a single `std`
operation.
Differential Revision: https://reviews.llvm.org/D86935
Currently, there is no option to allow for unrolling a loop up to a specific factor (specified by the user).
The code for doing that is there and there are benefits when unrolling is done to smaller loops (smaller than the factor specified).
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87111