Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360731
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360729
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360728
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360727
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360726
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360724
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360722
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360721
This was the portion split off D58632 so that it could follow the redzone API cleanup. Note that I changed the offset preferred from -8 to -64. The difference should be very minor, but I thought it might help address one concern which had been previously raised.
Differential Revision: https://reviews.llvm.org/D61862
llvm-svn: 360719
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360718
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360716
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360713
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360709
The +DumpCode attribute is a horrible hack in AMDGPU to embed the
disassembly of the generated code into the elf file. It is used by LLPC
to implement an extension that allows the application to read back the
disassembly of the code. Longer term, we should re-implement that by
using the LLVM disassembler from the Vulkan driver.
Recent LLVM changes broke +DumpCode. With -filetype=asm it crashed, and
with -filetype=obj I think it did not include any instructions, only the
labels. Fixed with this commit: now it has no effect with -filetype=asm,
and works as intended with -filetype=obj.
Differential Revision: https://reviews.llvm.org/D60682
Change-Id: I6436d86fe2ea220d74a643a85e64753747c9366b
llvm-svn: 360688
D61068 handled vector shifts, this patch does the same for scalars where there are similar number of pipes for shifts as bit ops - this is true almost entirely for AMD targets where the scalar ALUs are well balanced.
This combine avoids AND immediate mask which usually means we reduce encoding size.
Some tests show use of (slow, scaled) LEA instead of SHL in some cases, but thats due to particular shift immediates - shift+mask generate these just as easily.
Differential Revision: https://reviews.llvm.org/D61830
llvm-svn: 360684
Summary:
This patch adds support for the following instructions:
MLA mul-add, writing addend (Zda = Zda + Zn * Zm[idx])
MLS mul-sub, writing addend (Zda = Zda + -Zn * Zm[idx])
Predicated forms of these instructions were added in SVE.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: rovka
Differential Revision: https://reviews.llvm.org/D61514
llvm-svn: 360682
For known CRBit spills, CRSET/CRUNSET, it is more efficient to load and spill
the known value instead of extracting the bit.
eg. This sequence is currently used to spill a CRUNSET:
crclr 4*cr5+lt
mfocrf r3,4
rlwinm r3,r3,20,0,0
stw r3,132(r1)
This patch custom lower it to:
li r3,0
stw r3,132(r1)
Differential Revision: https://reviews.llvm.org/D61754
llvm-svn: 360677
This adds support for the arm64_32 watchOS ABI to LLVM's low level tools,
teaching them about the specific MachO choices and constants needed to
disassemble things.
llvm-svn: 360663
This is a follow on to D58632, with the same logic. Given a memory operation which needs ordering, but doesn't need to modify any particular address, prefer to use a locked stack op over an mfence.
Differential Revision: https://reviews.llvm.org/D61863
llvm-svn: 360649
Returning SDValue() makes the caller think that nothing happened and it will
end up executing the Expand path. This generates extra nodes that will need to
be pruned as dead code.
Returning an ISD::MERGE_VALUES will tell the caller that we'd like to make a
change and it will take care of replacing uses. This will prevent falling into
the Expand path.
llvm-svn: 360627
These are updates to match how isel table would emit a LOCK_OR32mi8 node.
-Use i32 for the immediate zero even though only 8 bits are encoded.
-Use i16 for segment register.
-Use LOCK_OR32mi8 for idempotent atomic operations in 32-bit mode to match
64-bit mode. I'm not sure why OR32mi8Locked and LOCK_OR32mi8 both exist. The
only difference seems to be that OR32mi8Locked is marked as UnmodeledSideEffects=1.
-Emit an extra i32 result for the flags output.
I don't know if the types here really matter just noticed it was inconsistent
with normal behavior.
llvm-svn: 360619
Usually this will abort fast-isel at the instruction using the
non-legal result, but if the only use is in a different basic block,
we'll incorrectly assume that the zext/sext is to i32 (rather than
i128 in this case).
Differential Revision: https://reviews.llvm.org/D61823
llvm-svn: 360616
Summary:
X86TargetLowering::LowerAsmOperandForConstraint had better support than
TargetLowering::LowerAsmOperandForConstraint for arbitrary depth
getelementpointers for "i", "n", and "s" extended inline assembly
constraints. Hoist its support from the derived class into the base
class.
Link: https://github.com/ClangBuiltLinux/linux/issues/469
Reviewers: echristo, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, E5ten, kees, jyknight, nemanjai, javed.absar, eraman, hiraditya, jsji, llvm-commits, void, craig.topper, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61560
llvm-svn: 360604
Fixes the regression noted in D61782 where a VZEXT_MOVL was being inserted because we weren't discriminating between 'zeroable' and 'all undef' for the upper elts.
Differential Revision: https://reviews.llvm.org/D61782
llvm-svn: 360596
Now that we can use HADD/SUB for scalar additions from any pair of extracted elements (D61263), we can relax the one use limit as we will be able to merge multiple uses into using the same HADD/SUB op.
This exposes a couple of missed opportunities in LowerBuildVectorv4x32 which will be committed separately.
Differential Revision: https://reviews.llvm.org/D61782
llvm-svn: 360594
Summary:
This patch adds the following features defined by Arm SVE2 architecture
extension:
sve2, sve2-aes, sve2-sm4, sve2-sha3, bitperm
For existing CPUs these features are declared as unsupported to prevent
scheduler errors.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewers: SjoerdMeijer, sdesmalen, ostannard, rovka
Reviewed By: SjoerdMeijer, rovka
Subscribers: rovka, javed.absar, tschuett, kristof.beyls, kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61513
llvm-svn: 360573
This adds the FPC (floating-point control register) as a reserved
physical register and models its use by SystemZ instructions.
Note that only the current rounding modes and the IEEE exception
masks are modeled. *Changes* of the FPC due to exceptions (in
particular the IEEE exception flags and the DXC) are not modeled.
At this point, this patch is mostly NFC, but it will prevent
scheduling of floating-point instructions across SPFC/LFPC etc.
llvm-svn: 360570
When deciding the safety of generating smlad, we checked for any
writes within the block that may alias with any of the loads that
need to be widened. This is overly conservative because it only
matters when there's a potential aliasing write to a location
accessed by a pair of loads.
Now we check for aliasing writes only once, during setup. If two
loads are found to have an aliasing write between them, we don't add
these loads to LoadPairs. This means that later during the transform,
we can safely widened a pair without worrying about aliasing.
However, to maintain correctness, we also need to change the way that
wide loads are inserted because the order is now important.
The MatchSMLAD method has also been changed, absorbing
MatchReductions and AddMACCandidate to hopefully improve readability.
Differential Revision: https://reviews.llvm.org/D6102
llvm-svn: 360567
This fixes the link error
ld.lld: error: undefined symbol: llvm::WebAssembly::anyTypeToString(unsigned int)
>>> referenced by WebAssemblyDisassembler.cpp
llvm-svn: 360558
Currently, without -g, BTF sections may still be emitted with
data sections, e.g., for linux kernel bpf selftest
test_tcp_check_syncookie_kern.c issue discovered by Martin
as shown below.
-bash-4.4$ bpftool btf dump file test_tcp_check_syncookie_kern.o
[1] VAR 'results' type_id=0, linkage=global-alloc
[2] VAR '_license' type_id=0, linkage=global-alloc
[3] DATASEC 'license' size=0 vlen=1
type_id=2 offset=0 size=4
[4] DATASEC 'maps' size=0 vlen=1
type_id=1 offset=0 size=28
Let disable BTF generation if no debuginfo, which is
the original design.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61826
llvm-svn: 360556
I've included a new fix in X86RegisterInfo to prevent PR41619 without
reintroducing r359392. We might be able to improve that in the base class
implementation of shouldRewriteCopySrc somehow. But this hopefully enables
forward progress on SimplifyDemandedBits improvements for now.
Original commit message:
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGComb
but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
llvm-svn: 360552
For some targets, there is a circular dependency between InstPrinter and
MCTargetDesc. Merging them together will fix this. For the other targets,
the merging is to maintain consistency so all targets will have the same
structure.
llvm-svn: 360550
See if we can simplify the demanded vector elts from the extraction before trying to simplify the demanded bits.
This helps us with target shuffles and hops in particular.
llvm-svn: 360535
The original costs stopped at SSE42, I've added conservative estimates for everything down to SSE1/SSE2 and moved some of the SSE42 costs to SSE41 (really only the addition of PCMPGT makes any difference).
I've also added missing vXi8 costs (we use PHMINPOSUW for i8/i16 for scarily quick results) and 256-bit vector costs for AVX1.
llvm-svn: 360528