This patch adds functionality to parse FlatAffineConstraints from a
StringRef with the intention to be used for unit tests. This should
make the construction of FlatAffineConstraints easier for testing
purposes.
The patch contains an example usage of the functionality in a unit test that
uses FlatAffineConstraints.
Reviewed By: bondhugula, grosser
Differential Revision: https://reviews.llvm.org/D113275
NamedAttribute is currently represented as an std::pair, but this
creates an extremely clunky .first/.second API. This commit
converts it to a class, with better accessors (getName/getValue)
and also opens the door for more convenient API in the future.
Differential Revision: https://reviews.llvm.org/D113956
This patch extends the existing functionality of computing an explicit
representation for local variables, to also get the explicit representation,
instead of only the inequality pairs.
This is required for a future patch to remove redundant local ids based on
their explicit representation.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D113814
OperationLegalizer::isIllegal returns false if operation legality wasn't
registered by user and we expect same behaviour when dynamic legality
callback return None, but instead true was returned.
Differential Revision: https://reviews.llvm.org/D113267
This reverts commit bec488b818.
This commit introduced a layering violation between MLIR libraries.
Reverting for now while discussing on the original review thread.
This patch adds functionality to parse FlatAffineConstraints from a
StringRef with the intention to be used for unit tests. This should
make the construction of FlatAffineConstraints easier for testing
purposes.
The patch contains an example usage of the functionality in a unit test that
uses FlatAffineConstraints.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D113275
There are several aspects of the API that either aren't easy to use, or are
deceptively easy to do the wrong thing. The main change of this commit
is to remove all of the `getValue<T>`/`getFlatValue<T>` from ElementsAttr
and instead provide operator[] methods on the ranges returned by
`getValues<T>`. This provides a much more convenient API for the value
ranges. It also removes the easy-to-be-inefficient nature of
getValue/getFlatValue, which under the hood would construct a new range for
the type `T`. Constructing a range is not necessarily cheap in all cases, and
could lead to very poor performance if used within a loop; i.e. if you were to
naively write something like:
```
DenseElementsAttr attr = ...;
for (int i = 0; i < size; ++i) {
// We are internally rebuilding the APFloat value range on each iteration!!
APFloat it = attr.getFlatValue<APFloat>(i);
}
```
Differential Revision: https://reviews.llvm.org/D113229
This allows to clear an OpPassManager and populated it again with a new
pipeline, while preserving all the other options (including instrumentations).
Differential Revision: https://reviews.llvm.org/D112393
The change is based on the proposal from the following discussion:
https://llvm.discourse.group/t/rfc-memreftype-affine-maps-list-vs-single-item/3968
* Introduce `MemRefLayoutAttr` interface to get `AffineMap` from an `Attribute`
(`AffineMapAttr` implements this interface).
* Store layout as a single generic `MemRefLayoutAttr`.
This change removes the affine map composition feature and related API.
Actually, while the `MemRefType` itself supported it, almost none of the upstream
can work with more than 1 affine map in `MemRefType`.
The introduced `MemRefLayoutAttr` allows to re-implement this feature
in a more stable way - via separate attribute class.
Also the interface allows to use different layout representations rather than affine maps.
For example, the described "stride + offset" form, which is currently supported in ASM parser only,
can now be expressed as separate attribute.
Reviewed By: ftynse, bondhugula
Differential Revision: https://reviews.llvm.org/D111553
- `assign` with ArrayRef was calling `append`
- `assign` with empty ArrayRef was not clearing storage
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D112043
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Make `raw_ostream operator<<` follow const correctness semantic,
since it is a requirement of FormatVariadic implementation.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D111547
* Change callback signature `bool(Operation *)` -> `Optional<bool>(Operation *)`
* addDynamicallyLegalOp add callback to the chain
* If callback returned empty `Optional` next callback in chain will be called
Differential Revision: https://reviews.llvm.org/D110487
I guess this is why we should use unique_ptr as much as possible.
Also fix the InterfaceAttachmentTest.cpp test.
Differential Revision: https://reviews.llvm.org/D110984
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
This patch adds functionality to FlatAffineConstraints to remove local
variables using equalities. This helps in keeping output representation of
FlatAffineConstraints smaller.
This patch is part of a series of patches aimed at generalizing affine
dependence analysis.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110056
Add support for intersecting, subtracting, complementing and checking equality of sets having divisions.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110138
Currently DenseElementsAttr only exposes the ability to get the full range of values for a given type T, but there are many situations where we just want the beginning/end iterator. This revision adds proper value_begin/value_end methods for all of the supported T types, and also cleans up a bit of the interface.
Differential Revision: https://reviews.llvm.org/D104173
Switches to adding target specific, private includes instead of adding
global includes.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D109494
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
This patch refactors the existing implementation of computing an explicit
representation of an identifier as a floordiv in terms of other identifiers and
exposes this computation as a public function.
The computation of this representation is required to support local identifiers
in PresburgerSet subtract, complement and isEqual.
Reviewed By: bondhugula, arjunp
Differential Revision: https://reviews.llvm.org/D106662
While the changes are extensive, they basically fall into a few
categories:
1) Moving the TestDialect itself.
2) Updating C++ code in tablegen to explicitly use ::mlir, since it
will be put in a headers that shouldn't expect a 'using'.
3) Updating some generic MLIR Interface definitions to do the same thing.
4) Updating the Tablegen generator in a few places to be explicit about
namespaces
5) Doing the same thing for llvm references, since we no longer pick
up the definitions from mlir/Support/LLVM.h
Differential Revision: https://reviews.llvm.org/D88251
This enables querying shapes/values as shapes without mutating the IR
directly (e.g., towards enabling doing inference in analysis &
application steps, inferring function shape with constant from callsite,
...). Add a new ShapeAdaptor that abstracts over whether shape is from
Type or ShapedTypeComponents or DenseIntElementsAttribute. This adds new
accessors to ValueShapeRange to get Shape and value as shape, but
doesn't restrict or remove the previous way of accessing Type via the
Value for now, that does mean a less refined shape could be accidentally
queried and will be restricted in follow up.
Currently restricted Value query to what can be represented as Shape. So
only supports cases where constant subgraph evaluation's output is a
shape. I had considered making it more general, but without TBD extern
attribute concept or some such a user cannot today uniformly avoid
overhead.
Update TOSA ops and also the shape inference pass.
Differential Revision: https://reviews.llvm.org/D107768
The following constructor call (and others) used to be ambiguous:
```
FlatAffineConstraints constraints(0, 0, 0);
```
Differential Revision: https://reviews.llvm.org/D107726
Store both interfaceID and objectID as key for interface registration callback.
Otherwise the implementation allows to register only one external model per one object in the single dialect.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D107274
This patch fixes a bug in the existing implementation of detectAsFloorDiv,
where floordivs with numerator with non-zero constant term and floordivs with
numerator only consisting of a constant term were not being detected.
Reviewed By: vinayaka-polymage
Differential Revision: https://reviews.llvm.org/D107214
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
Adds zero-preserving unary operators from std. Also adds xor.
Performs minor refactoring to remove "zero" node, and pushed
the irregular logic for negi (not support in std) into one place.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105928
This is a fix of https://reviews.llvm.org/D104956, which broke the gcc5 build.
We opt to use unit tests rather than check tests as the lattice/merger code is a small C++ component with a well-defined API. Testing this API via check tests would be far less direct and readable. In addition, as the check tests will only be able to test the API indirectly, the tests may break based on unrelated changes; e.g. changes in linalg.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D105828
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625