sometimes emit "zero" and "all one" vectors multiple times,
for example:
_test2:
pcmpeqd %mm0, %mm0
movq %mm0, _M1
pcmpeqd %mm0, %mm0
movq %mm0, _M2
ret
instead of:
_test2:
pcmpeqd %mm0, %mm0
movq %mm0, _M1
movq %mm0, _M2
ret
This patch fixes this by always arranging for zero/one vectors
to be defined as v4i32 or v2i32 (SSE/MMX) instead of letting them be
any random type. This ensures they get trivially CSE'd on the dag.
This fix is also important for LegalizeDAGTypes, as it gets unhappy
when the x86 backend wants BUILD_VECTOR(i64 0) to be legal even when
'i64' isn't legal.
This patch makes the following changes:
1) X86TargetLowering::LowerBUILD_VECTOR now lowers 0/1 vectors into
their canonical types.
2) The now-dead patterns are removed from the SSE/MMX .td files.
3) All the patterns in the .td file that referred to immAllOnesV or
immAllZerosV in the wrong form now use *_bc to match them with a
bitcast wrapped around them.
4) X86DAGToDAGISel::SelectScalarSSELoad is generalized to handle
bitcast'd zero vectors, which simplifies the code actually.
5) getShuffleVectorZeroOrUndef is updated to generate a shuffle that
is legal, instead of generating one that is illegal and expecting
a later legalize pass to clean it up.
6) isZeroShuffle is generalized to handle bitcast of zeros.
7) several other minor tweaks.
This patch is definite goodness, but has the potential to cause random
code quality regressions. Please be on the lookout for these and let
me know if they happen.
llvm-svn: 44310
use ISD::{S,U}DIVREM and ISD::{S,U}MUL_HIO. Move the lowering code
associated with these operators into target-independent in LegalizeDAG.cpp
and TargetLowering.cpp.
llvm-svn: 42762
both results with a single div or idiv instruction. This uses new X86ISD
nodes for DIV and IDIV which are introduced during the legalize phase
so that the SelectionDAG's CSE can automatically eliminate redundant
computations.
llvm-svn: 42308
have situations where an SSE instruction turns into
multiple blocks, with the live range of an x87
register crossing them. To do this correctly make
sure we examine all blocks when inserting
FP_REG_KILL. PR 1697. (This was exposed by my
fix for PR 1681, but the same thing could happen
mixing x87 long double with SSE.)
llvm-svn: 42281
see if the base register is already occupied before assuming it can be
used. This fixes bogus code generation in the accompanying testcase.
llvm-svn: 41049
SSE mode (all but conversions <-> other FP types, I think):
>>Do not mark all-80-bit operations as "Requires[FPStack]"
(which really means "not SSE").
>>Refactor load-and-extend to facilitate this.
>>Update comments.
>>Handle long double in SSE when computing FP_REG_KILL.
llvm-svn: 40906
TargetLowering to SelectionDAG so that they have more convenient
access to the current DAG, in preparation for the ValueType routines
being changed from standalone functions to members of SelectionDAG for
the pre-legalize vector type changes.
llvm-svn: 37704
1) codegen a shift of a register as a shift, not an LEA.
2) teach the RA to convert a shift to an LEA instruction if it wants something
in three-address form.
This gives us asm diffs like:
- leal (,%eax,4), %eax
+ shll $2, %eax
which is faster on some processors and smaller on all of them.
and, more interestingly:
- movl 24(%esi), %eax
- leal (,%eax,4), %edi
+ movl 24(%esi), %edi
+ shll $2, %edi
Without #2, #1 was a significant pessimization in some cases.
This implements CodeGen/X86/shift-codegen.ll
llvm-svn: 35204
X + C to promote LEA formation. We would incorrectly apply it in some cases
(test) and miss it in others.
This fixes CodeGen/X86/2007-02-04-OrAddrMode.ll
llvm-svn: 33884
* PIC-aware internal structures in X86 Codegen have been refactored
* Visibility (default/weak) has been added
* Docs fixes (external weak linkage, visibility, formatting)
llvm-svn: 33136
- New target type "mingw" was introduced
- Same things for both mingw & cygwin are marked as "cygming" (as in
gcc)
- .lcomm is supported here, so allow LLVM to use it
- Correctly use underscored versions of setjmp & _longjmp for both mingw
& cygwin
llvm-svn: 32833
clearing the upper 8-bits instead of issuing two instructions. This also
eliminates the need to target the AH register which can be problematic on
x86-64.
llvm-svn: 31832