Instead of storing a pointer, store the members we need.
The reason for doing this is that it makes it far easier to create
synthetic sections. It also avoids reading data from files multiple
times., which might help with cross endian linking and host
architectures with slow unaligned access.
There are obvious compacting opportunities, but this already has mixed
results even on native x86_64 linking.
There is also the possibility of better refactoring the code for
handling common symbols, but this already shows that a custom class is
not necessary.
llvm-svn: 285148
We were fairly inconsistent as to what information should be accessed
with getSectionHdr and what information (like alignment) was stored
elsewhere.
Now all section info has a dedicated getter. The code is also a bit
more compact.
llvm-svn: 285079
Builds were failing with:
InputSection.h(139): error C2338: SectionPiece is too big
because MSVC does record layout differently, probably not packing the
'OutputOff' and 'Live' bitfields because their types are of different
size. Using size_t for 'Live' seems to fix it.
llvm-svn: 284740
Previously, we supported only SHF_COMPRESSED sections because it's
new and it's the ELF standard. But there are object files compressed
in the GNU style out there, so we had to support it.
Sections compressed in the GNU style start with ".zdebug_" and
contain different headers than the ELF standard's one. In this
patch, getRawCompressedData is responsible to handle it.
A tricky thing about GNU-style compressed sections is that we have
to rename them when creating output sections. ".zdebug_" prefix
implies the section is compressed. We need to rename ".zdebug_"
".debug" because our output sections are not compressed.
We do that in this patch.
llvm-svn: 284068
.ARM.exidx sections have a reverse dependency on the section they have
a SHF_LINK_ORDER dependency on. In other words a .ARM.exidx section is
live only if the executable section it describes is live. We implement
this with a reverse dependency field in InputSection.
Adding the dependency to InputSection is the simplest implementation
but it could be moved out to a separate map if it were found to decrease
performance for non ARM targets.
Differential revision: https://reviews.llvm.org/D25234
llvm-svn: 283734
The .ARM.exidx sections contain a table. Each entry has two fields:
- PREL31 offset to the function the table entry describes
- Action to take, either cantunwind, inline unwind, or PREL31 offset to
.ARM.extab section
The table entries must be sorted in order of the virtual addresses the
first entry of the table describes. Traditionally this is implemented by
the SHF_LINK_ORDER dependency. Instead of implementing this directly we
sort the table entries post relocation.
The .ARM.exidx OutputSection is described by the PT_ARM_EXIDX program
header
Differential revision: https://reviews.llvm.org/D25127
llvm-svn: 283730
This spreads out computing the hash and using it in a hash table. The
speedups are:
firefox
master 6.811232891
patch 6.559280249 1.03841162939x faster
chromium
master 4.369323666
patch 4.33171853 1.00868134338x faster
chromium fast
master 1.856679971
patch 1.850617741 1.00327578725x faster
the gold plugin
master 0.32917962
patch 0.325711944 1.01064645023x faster
clang
master 0.558015452
patch 0.550284165 1.01404962652x faster
llvm-as
master 0.032563515
patch 0.032152077 1.01279662275x faster
the gold plugin fsds
master 0.356221362
patch 0.352772162 1.00977741549x faster
clang fsds
master 0.635096494
patch 0.627249229 1.01251060127x faster
llvm-as fsds
master 0.030183188
patch 0.029889544 1.00982430511x faster
scylla
master 3.071448906
patch 2.938484138 1.04524944215x faster
This seems to be because we don't stall as much. When linking firefox
stalled-cycles-frontend goes from 57.56% to 55.55%.
With -O2 the difference is even more significant since we avoid
recomputing the hash. For firefox we go from 9.990295265 to
9.149627521 seconds (1.09x faster).
llvm-svn: 283367
It is pretty easy to get the data from the InputSection, so we don't
have to store it.
This opens the way for storing the hash instead.
llvm-svn: 283357
This simplifies error handling as there is now only one place in the
code that needs to consider the possibility that the name is
corrupted. Before we would do it in every access.
llvm-svn: 280937
Previously we used LayoutInputSection class to correctly assign
symbols defined in linker script. This patch removes it and uses
pointer to preceding input section in SymbolAssignment class instead.
Differential revision: https://reviews.llvm.org/D23661
llvm-svn: 280348
This section supersedes .reginfo and .MIPS.options sections. But for now
we have to support all three sections for ABI transition period.
llvm-svn: 278482
All other singleton instances are accessible globally.
CommonInputSection shouldn't be an exception.
Differential Revision: https://reviews.llvm.org/D22935
llvm-svn: 277034
Not all relocations from a .eh_frame that point to an executable
section should be ignored. In particular, the relocation finding the
personality function should not.
This is a reduction from trying to bootstrap a static lld on linux.
llvm-svn: 276329
We no longer need it for relocations in .eh_frame.
The only relocations that point to .eh_frame are the ones trying to
find the output .eh_frame.
This actually fixes a bug in the symbol value code. It was not
handling -1 as an indicator for a piece not being included in the
output.
llvm-svn: 276175
Creating sections on linkerscript side requires some methods
that can be reused if are exported from writer.
Patch implements that change.
Differential revision: http://reviews.llvm.org/D20104
llvm-svn: 275162
The TinyPtrVector of const Thunk<ELFT>* in InputSections.h can cause
build failures on certain compiler/library combinations when Thunk<ELFT>
is not a complete type or is an abstract class. Fixed by making Thunk<ELFT>
non Abstract.
type or is an abstract class
llvm-svn: 274863
Generalise the Mips LA25 Thunk code and implement ARM and Thumb
interworking Thunks.
- Introduce a new module Thunks.cpp to store the Target Specific Thunk
implementations.
- DefinedRegular and Shared have a ThunkData field to record Thunk.
- A Target can have more than one type of Thunk.
- Support PC-relative calls to Thunks.
- Support Thunks to PLT entries.
- Existing Mips LA25 Thunk code integrated.
- Support for ARMv7A interworking Thunks.
Limitations:
- Only one Thunk per SymbolBody, this is sufficient for all currently
implemented Thunks.
- ARM thunks assume presence of V6T2 MOVT and MOVW instructions.
Differential revision: http://reviews.llvm.org/D21891
llvm-svn: 274836
Previously, ch_size was read in host byte order, so if a host and
a target are different in byte order, we would produce a corrupted
output.
llvm-svn: 274729
Patch implements support of zlib style compressed sections.
SHF_COMPRESSED flag is used to recognize that decompression is required.
After that decompression is performed and flag is removed from output.
Differential revision: http://reviews.llvm.org/D20272
llvm-svn: 273661
Peter Smith found while trying to support thunk creation for ARM that
LLD sometimes creates broken thunks for MIPS. The cause of the bug is
that we assign file offsets to input sections too early. We need to
create all sections and then assign section offsets because appending
thunks changes file offsets for all following sections.
This patch separates the pass to assign file offsets from thunk
creation pass. This effectively reverts r265673.
Differential Revision: http://reviews.llvm.org/D21598
llvm-svn: 273532
I think it is me who named these variables, but I always find that
they are slightly confusing because align is a verb.
Adding four letters is worth it.
llvm-svn: 272984
MergedInputSection::getOffset is the busiest function in LLD if string
merging is enabled and input files have lots of mergeable sections.
It is usually the case when creating executable with debug info,
so it is pretty common.
The reason why it is slow is because it has to do faily complex
computations. For non-mergeable sections, section contents are
contiguous in output, so in order to compute an output offset,
we only have to add the output section's base address to an input
offset. But for mergeable strings, section contents are split for
merging, so they are not contigous. We've got to do some lookups.
We used to do binary search on the list of section pieces.
It is slow because I think it's hostile to branch prediction.
This patch replaces it with hash table lookup. Seems it's working
pretty well. Below is "perf stat -r10" output when linking clang
with debug info. In this case this patch speeds up about 4%.
Before:
6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% )
238 context-switches # 0.036 K/sec ( +- 6.59% )
0 cpu-migrations # 0.000 K/sec ( +- 50.92% )
1,067,675 page-faults # 0.162 M/sec ( +- 0.15% )
18,369,931,470 cycles # 2.790 GHz ( +- 0.09% )
9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% )
<not supported> stalled-cycles-backend
21,206,747,787 instructions # 1.15 insns per cycle
# 0.45 stalled cycles per insn ( +- 0.04% )
3,817,398,032 branches # 579.786 M/sec ( +- 0.04% )
132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% )
6.579106511 seconds time elapsed ( +- 0.09% )
After:
6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% )
221 context-switches # 0.035 K/sec ( +- 4.11% )
1 cpu-migrations # 0.000 K/sec ( +- 45.21% )
1,280,775 page-faults # 0.203 M/sec ( +- 0.37% )
17,611,539,150 cycles # 2.790 GHz ( +- 0.19% )
10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% )
<not supported> stalled-cycles-backend
18,794,779,900 instructions # 1.07 insns per cycle
# 0.55 stalled cycles per insn ( +- 0.03% )
3,287,450,865 branches # 520.799 M/sec ( +- 0.03% )
72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% )
6.307411828 seconds time elapsed ( +- 0.19% )
Differential Revision: http://reviews.llvm.org/D20645
llvm-svn: 270999
This patch makes SectionPiece class 8 bytes smaller on platforms
on which pointer size is 8 bytes. Sean suggested in a post commit
review for r270340 that this could make a differentce, and it
actually is. Time to link clang (with debug info) improved from
6.725 seconds to 6.589 seconds or by about 2%.
Differential Revision: http://reviews.llvm.org/D20613
llvm-svn: 270717
scanReloc and the functions on which scanReloc depends is in total
more than 600 lines of code. Since scanReloc does not depend on Writer,
it is better to move it into a separate file.
Differential Revision: http://reviews.llvm.org/D20554
llvm-svn: 270606
Previously, mergeable section's constructors did more than just
setting member variables; it split section contents into small
pieces. It is not always computationally cheap task because if
the section is a mergeable string section, it needs to scan the
entire section to split them by NUL characters.
If a section would be thrown away by GC, that cost ended up
being a waste of time. It is going to be larger problem if the
section is compressed -- the whole time to uncompress it and
split it up is going to be a waste.
Luckily, we can defer section splitting after GC. We just have
to remember which offsets are in use during GC and apply that later.
This patch implements it.
Differential Revision: http://reviews.llvm.org/D20516
llvm-svn: 270455
This patch adds Size member to SectionPiece so that getRangeAndSize
can just return a SectionPiece instead of a std::pair<SectionPiece *, uint_t>.
Also renamed the function.
llvm-svn: 270346
We were using std::pair to represents pieces of splittable section
contents. It hurt readability because "first" and "second" are not
meaningful. This patch give them names.
One more thing is that piecewise liveness information is stored to
the second element of the pair as a special value of output section
offset. It was confusing, so I defiend a new bit, "Live", in the
new struct.
llvm-svn: 270340
This makes it explicit that each R_RELAX_TLS_* is equivalent to some
other expression.
With this I think we are at a sweet spot for how much is done in
Target.cpp. I did experiment with moving *all* the value math out of it.
It has the advantage that we know the final value in target independent
code, but it gets quite verbose.
llvm-svn: 270277
New names reflect purpose of corresponding GOT entries better.
Both expression types related to entries allocated in the 'local'
part of MIPS GOT. R_MIPS_GOT_LOCAL_PAGE is for entries contain 'page'
addresses. R_MIPS_GOT_LOCAL is for entries contain 'full' address.
llvm-svn: 269597
We were previously using an output offset of -1 for both GC'd and tail
merged pieces. We need to distinguish these two cases in order to filter
GC'd symbols from the symbol table -- we were previously asserting when we
asked for the VA of a symbol pointing into a dead piece, which would end
up asking the tail merging string table for an offset even though we hadn't
initialized it properly.
This patch fixes the bug by using an offset of -1 to exclusively mean GC'd
pieces, using 0 for tail merges, and distinguishing the tail merge case from
an offset of 0 by asking the output section whether it is tail merge.
Differential Revision: http://reviews.llvm.org/D19953
llvm-svn: 268604
MIPS N64 ABI introduces .MIPS.options section which specifies miscellaneous
options to be applied to an object/shared/executable file. LLVM as well as
modern versions of GNU tools read and write the only type of the options -
ODK_REGINFO. It is exact copy of .reginfo section used by O32 ABI.
llvm-svn: 268485
These would just crash at runtime.
If we ever decide to support rw text segments this should make it easier
to implement as there is now a single point where we notice the problem.
I have tested this with a freebsd buildworld. It found a non pic
assembly file being linked into a .so,. With that fixed, buildworld
finished.
llvm-svn: 268149
Relocations against sections with no SHF_ALLOC bit are R_ABS relocations.
Currently we are creating Relocations vector for them, but that is wasteful.
This patch is to skip vector construction and to directly apply relocations
in place.
This patch seems to be pretty effective for large executables with debug info.
r266158 (Rafael's patch to change the way how we apply relocations) caused a
temporary performance degradation for such executables, but this patch makes
it even faster than before.
Time to link clang with debug info (output size is 1070 MB):
before r266158: 15.312 seconds (0%)
r266158: 17.301 seconds (+13.0%)
Head: 16.484 seconds (+7.7%)
w/patch: 13.166 seconds (-14.0%)
Differential Revision: http://reviews.llvm.org/D19645
llvm-svn: 267917
The fix is to handle local symbols referring to SHF_MERGE sections.
Original message:
GC entries of SHF_MERGE sections.
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets
were used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267233
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets were
used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267164
It turns out that this will read data from the section to properly
handle Elf_Rel implicit addends.
Sorry for the noise.
Original messages:
Try to fix Windows lld build.
Move getRelocTarget to ObjectFile.
It doesn't use anything from the InputSection.
llvm-svn: 267163
This requires adding a few more expression types, but is already a small
simplification. Having Writer.cpp know the exact expression will also
allow further simplifications.
llvm-svn: 266604
With this patch we use the first scan over the relocations to remember
the information we found about them: will them be relaxed, will a plt be
used, etc.
With that the actual relocation application becomes much simpler. That
is particularly true for the interfaces in Target.h.
This unfortunately means that we now do two passes over relocations for
non SHF_ALLOC sections. I think this can be solved by factoring out the
code that scans a single relocation. It can then be used both as a scan
that record info and for a dedicated direct relocation of non SHF_ALLOC
sections.
I also think it is possible to reduce the number of enum values by
representing a target with just an OutputSection and an offset (which
can be from the start or end).
This should unblock adding features like relocation optimizations.
llvm-svn: 266158
Our symbol representation was redundant, and some times would get out of
sync. It had an Elf_Sym, but some fields were copied to SymbolBody.
Different parts of the code were checking the bits in SymbolBody and
others were checking Elf_Sym.
There are two general approaches to fix this:
* Copy the required information and don't store and Elf_Sym.
* Don't copy the information and always use the Elf_Smy.
The second way sounds tempting, but has a big problem: we would have to
template SymbolBody. I started doing it, but it requires templeting
*everything* and creates a bit chicken and egg problem at the driver
where we have to find ELFT before we can create an ArchiveFile for
example.
As much as possible I compared the test differences with what gold and
bfd produce to make sure they are still valid. In most cases we are just
adding hidden visibility to a local symbol, which is harmless.
In most tests this is a small speedup. The only slowdown was scylla
(1.006X). The largest speedup was clang with no --build-id, -O3 or
--gc-sections (i.e.: focus on the relocations): 1.019X.
llvm-svn: 265293
Some targets might require creation of thunks. For example, MIPS targets
require stubs to call PIC code from non-PIC one. The patch implements
infrastructure for thunk code creation and provides support for MIPS
LA25 stubs. Any MIPS PIC code function is invoked with its address
in register $t9. So if we have a branch instruction from non-PIC code
to the PIC one we cannot make the jump directly and need to create a small
stub to save the target function address.
See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- In relocation scanning phase we ask target about thunk creation necessity
by calling `TagetInfo::needsThunk` method. The `InputSection` class
maintains list of Symbols requires thunk creation.
- Reassigning offsets performed for each input sections after relocation
scanning complete because position of each section might change due
thunk creation.
- The patch introduces new dedicated value for DefinedSynthetic symbols
DefinedSynthetic::SectionEnd. Synthetic symbol with that value always
points to the end of the corresponding output section. That allows to
escape updating synthetic symbols if output sections sizes changes after
relocation scanning due thunk creation.
- In the `InputSection::writeTo` method we write thunks after corresponding
input section. Each thunk is written by calling `TargetInfo::writeThunk` method.
- The patch supports the only type of thunk code for each target. For now,
it is enough.
Differential Revision: http://reviews.llvm.org/D17934
llvm-svn: 265059
This simplifies a few things
* Read the value as early as possible, instead of passing a pointer to
the location.
* Print the warning for missing pair close to where we find out it is
missing.
* Don't pass the value to relocateOne.
llvm-svn: 264802
This patch implements the same algorithm as LLD/COFF's ICF. I'm
not going to repeat the same description about how it works, so you
want to read the comment in ICF.cpp in this patch if you want to know
the details. This algorithm should be more powerful than the ICF
algorithm implemented in GNU gold. It can even merge mutually-recursive
functions (which is harder than one might think).
ICF is a fairly effective size optimization. Here are some examples.
LLD: 37.14 MB -> 35.80 MB (-3.6%)
Clang: 59.41 MB -> 57.80 MB (-2.7%)
The lacking feature is "safe" version of ICF. This merges all
identical sections. That is not compatible with a C/C++ language
requirement that two distinct functions must have distinct addresses.
But as long as your program do not rely on the pointer equality
(which is in many cases true), your program should work with the
feature. LLD works fine for example.
GNU gold implements so-called "safe ICF" that identifies functions
that are safe to merge by heuristics -- for example, gold thinks
that constructors are safe to merge because there is no way to
take an address of a constructor in C++. We have a different idea
which David Majnemer suggested that we add NOPs at beginning of
merged functions so that two or more pointers can have distinct
values. We can do whichever we want, but this patch does not
include neither.
http://reviews.llvm.org/D17529
llvm-svn: 261912
-r, -relocatable - Generate relocatable output
Currently does not have support for files containing
relocation sections with entries that refer to local
symbols (like rel[a].eh_frame which refer to sections
and not to symbols)
Differential revision: http://reviews.llvm.org/D14382
llvm-svn: 261838
"Discarded" section is a marker for discarded sections, and we do not
use the instance except for checking its identity. In that sense, it
is just another type of a "null" pointer for InputSectionBase. So,
it doesn't have to be a real instance of InputSectionBase class.
In this patch, we no longer instantiate Discarded section but instead
use -1 as a pointer value. This eliminates a global variable which
needed initialization at startup.
llvm-svn: 261761
This is a preparation for ICF. If we merge two sections, we want to
align the merged section at the largest alignment requirement.
That means we want to update the alignment value, which was
impossible before this patch because Header is a const value.
llvm-svn: 261712
MipsReginfoInputSection is basically just a container of Elf_Mips_Reginfo
struct. This patch makes that struct directly accessible from others.
llvm-svn: 256984
The R_MIPS_GPREL16 / R_MIPS_GPREL32 relocations use the following
expressions for calculations:
```
local symbol: S + A + GP0 - GP
global symbol: S + A - GP
GP - Represents the final gp value, i.e. _gp symbol
GP0 - Represents the gp value used to create the relocatable object
```
The GP0 value is taken from the .reginfo data section defined by an object
file. To implement that I keep a reference to `MipsReginfoInputSection`
in the `ObjectFile` class. This reference is used by the
`ObjectFile::getMipsGp0` method to return the GP0 value.
Differential Revision: http://reviews.llvm.org/D15760
llvm-svn: 256416
MIPS .reginfo section provides information on the registers used by
the code in the object file. Linker should collect this information and
write .reginfo section in the output file. This section contains a union
of used registers masks taken from input .reginfo sections and final
value of the `_gp` symbol.
For details see the "Register Information" section in Chapter 4 in the
following document:
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
The patch implements .reginfo sections handling with a couple missed
features: a) it does not put output .reginfo section into the separate
REGINFO segment; b) it does not merge `ri_cprmask` masks from input
section. These features will be implemented later.
Differential Revision: http://reviews.llvm.org/D15669
llvm-svn: 256119
Some MIPS relocations including `R_MIPS_HI16/R_MIPS_LO16` use combined
addends. Such addend is calculated using addends of both paired relocations.
Each `R_MIPS_HI16` relocation is paired with the next `R_MIPS_LO16`
relocation. ABI requires to compute such combined addend in case of REL
relocation record format only.
For details see p. 4-17 at
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
This patch implements lookup of the next paired relocation suing new
`InputSectionBase::findPairedRelocLocation` method. The primary
disadvantage of this approach is that we put MIPS specific logic into
the common code. The next disadvantage is that we lookup `R_MIPS_LO16`
for each `R_MIPS_HI16` relocation, while in fact multiple `R_MIPS_HI16`
might be paired with the single `R_MIPS_LO16`. From the other side
this way allows us to keep `MipsTargetInfo` class stateless and implement
later relocation handling in parallel.
This patch does not support `R_MIPS_HI16/R_MIPS_LO16` relocations against
`_gp_disp` symbol. In that case the relocations use a special formula for
the calculation. That will be implemented later.
Differential Revision: http://reviews.llvm.org/D15112
llvm-svn: 254461
This adds support for:
* Uniquing CIEs
* Dropping FDEs that point to dropped sections
It drops 657 488 bytes from the .eh_frame of a Release+Asserts clang.
The link time impact is smallish. Linking clang with a Release+Asserts
lld goes from 0.488064805 seconds to 0.504763060 seconds (1.034 X slower).
llvm-svn: 252790
Section garbage collection is a feature to remove unused sections
from outputs. Unused sections are sections that cannot be reachable
from known GC-root symbols or sections. Naturally the feature is
implemented as a mark-sweep garbage collector.
In this patch, I added Live bit to InputSectionBase. If and only
if Live bit is on, the section will be written to the output.
Starting from GC-root symbols or sections, a new function, markLive(),
visits all reachable sections and sets their Live bits. Writer then
ignores sections whose Live bit is off, so that such sections are
excluded from the output.
This change has small negative impact on performance if you use
the feature because making sections means more work. The time to
link Clang changes from 0.356s to 0.386s, or +8%.
It reduces Clang size from 57,764,984 bytes to 55,296,600 bytes.
That is 4.3% reduction.
http://reviews.llvm.org/D13950
llvm-svn: 251043
Given the name, it is natural for this function to compute the full target.
This will simplify SHF_MERGE handling by allowing getLocalRelTarget to
centralize the addend logic.
llvm-svn: 250731
This patch is to use ELFT instead of Is64Bits to template OutputSection
and its subclasses. This increases code size slightly because it creates
two identical functions for some classes, but that's only 20 KB out of
33 MB, so it's negligible.
This is as per discussion with Rafael. He's not fan of the idea but OK
with this. We'll revisit later to this topic.
llvm-svn: 250466
When a relocation points to a SHF_MERGE section, the addend has special meaning.
It should be used to find what in the section the relocation points to. It
should not be added to the output position.
Centralizing it means that the above rule will be implemented once, not once
per target.
llvm-svn: 250421
Under the PPC64 ELF ABI, functions that might call into other modules (and,
thus, need to load a different TOC base value into %r2), need to restore the
old value after the call. The old value is saved by the .plt code, and the
caller only needs to include a nop instruction after the call, which the linker
will transform into a TOC restore if necessary.
In order to do this the relocation handler needs two things:
1. It needs to know whether the call instruction it is modifying is targeting
a .plt stub that will load a new TOC base value (necessitating a restore after
the call).
2. It needs to know where the buffer ends, so that it does not accidentally
run off the end of the buffer when looking for the 'nop' instruction after the
call.
Given these two pieces of information, we can insert the restore instruction in
place of the following nop when necessary.
llvm-svn: 250110
Previously, output sections that are handled specially by the linker
(e.g. PLT or GOT) were created by Writer and passed to other classes
that need them. The problem was that because these special sections
are required by so many classes, the plumbing work became too much
burden.
This patch is to simply make them accessible from anywhere in the
linker to eliminate the plumbing work once and for all.
http://reviews.llvm.org/D13486
llvm-svn: 249590