Summary:
Fixed all of the missing endian conversions that Lang Hames and I identified in
RuntimeDyldMachOARM.h.
Fixed the opcode emission in RuntimeDyldImpl::createStubFunction() for AArch64,
ARM, Mips when the host endian doesn't match the target endian.
PowerPC will need changing if it's opcodes are affected by endianness but I've
left this for now since I'm unsure if this is the case and it's the only path
that specifies the target endian.
This patch fixes MachO_ARM_PIC_relocations.s on a big-endian Mips host. This
is the last of the known issues on this host.
Reviewers: lhames
Reviewed By: lhames
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6130
llvm-svn: 221446
There are two methods in SectionRef that can fail:
* getName: The index into the string table can be invalid.
* getContents: The section might point to invalid contents.
Every other method will always succeed and returning and std::error_code just
complicates the code. For example, a section can have an invalid alignment,
but if we are able to get to the section structure at all and create a
SectionRef, we will always be able to read that invalid alignment.
llvm-svn: 219314
I'm not sure this is a particularly helpful API (to pass ownership and
then return it unconditionally) rather than just pass the underlying
object by non-const reference, but this was the original API so I'll
just make it more safe/stable and anyone else is free to adjust that at
their whim, of course.
llvm-svn: 217081
The syntax of the new builtin is 'section_addr(<filename>, <section-name>)'
(similar to the stub_addr builtin, but without a symbol name). It returns the
base address of the given section in the given object file. This builtin makes
it possible to refer to the contents of sections that cannot contain symbols,
e.g. sections added by the linker itself, like __eh_frame.
llvm-svn: 217010
Having both Triple::arm64 and Triple::aarch64 is extremely confusing, and
invites bugs where only one is checked. In reality, the only legitimate
difference between the two (arm64 usually means iOS) is also present in the OS
part of the triple and that's what should be checked.
We still parse the "arm64" triple, just canonicalise it to Triple::aarch64, so
there aren't any LLVM-side test changes.
llvm-svn: 213743
There's no reason to restrict this particular piece of RuntimeDyldChecker
functionality to +Asserts builds.
This should fix failures in MachO_x86-64_PIC_relocations.s on release bots.
llvm-svn: 213708
This patch introduces a 'stub_addr' builtin that can be used to find the address
of the stub for a given (<file>, <section>, <symbol>) tuple. This address can be
used both to verify the contents of stubs (by loading from the returned address)
and to verify references to stubs (by comparing against the returned address).
Example (1) - Verifying stub contents:
Load 8 bytes (assuming a 64-bit target) from the stub for 'x' in the __text
section of f.o, and compare that value against the addres of 'x'.
# rtdyld-check: *{8}(stub_addr(f.o, __text, x) = x
Example (2) - Verifying references to stubs:
Decode the immediate of the instruction at label 'l', and verify that it's
equal to the offset from the next instruction's PC to the stub for 'y' in the
__text section of f.o (i.e. it's the correct PC-rel difference).
# rtdyld-check: decode_operand(l, 4) = stub_addr(f.o, __text, y) - next_pc(l)
l:
movq y@GOTPCREL(%rip), %rax
Since stub inspection requires cooperation with RuntimeDyldImpl this patch
pimpl-ifies RuntimeDyldChecker. Its implementation is moved in to a new class,
RuntimeDyldCheckerImpl, that has access to the definition of RuntimeDyldImpl.
llvm-svn: 213698
This patch enables the new ELFv2 ABI in the runtime dynamic loader.
The loader has to implement the following features:
- In the ELFv2 ABI, do not look up a function descriptor in .opd, but
instead use the local entry point when resolving a direct call.
- Update the TOC restore code to use the new TOC slot linkage area
offset.
- Create PLT stubs appropriate for the ELFv2 ABI.
Note that this patch also adds common-code changes. These are necessary
because the loader must check the newly added ELF flags: the e_flags
header bits encoding the ABI version, and the st_other symbol table
entry bits encoding the local entry point offset. There is currently
no way to access these, so I've added ObjectFile::getPlatformFlags and
SymbolRef::getOther accessors.
Reviewed by Hal Finkel.
llvm-svn: 213491
The previous implementation of RuntimeDyldMachO mixed logic for all targets
within a single class, creating problems for readability, maintainability, and
performance. To address these issues, this patch strips the RuntimeDyldMachO
class down to just target-independent functionality, and moves all
target-specific functionality into target-specific subclasses RuntimeDyldMachO.
The new class hierarchy is as follows:
class RuntimeDyldMachO
Implemented in RuntimeDyldMachO.{h,cpp}
Contains logic that is completely independent of the target. This consists
mostly of MachO helper utilities which the derived classes use to get their
work done.
template <typename Impl>
class RuntimeDyldMachOCRTPBase<Impl> : public RuntimeDyldMachO
Implemented in RuntimeDyldMachO.h
Contains generic MachO algorithms/data structures that defer to the Impl class
for target-specific behaviors.
RuntimeDyldMachOARM : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM>
RuntimeDyldMachOARM64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM64>
RuntimeDyldMachOI386 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386>
RuntimeDyldMachOX86_64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64>
Implemented in their respective *.h files in lib/ExecutionEngine/RuntimeDyld/MachOTargets
Each of these contains the relocation logic specific to their target architecture.
llvm-svn: 213293
SECTDIFF relocations on 32-bit x86.
This fixes several of the MCJIT regression test failures that show up on 32-bit
builds.
<rdar://problem/16886294>
llvm-svn: 208635
relocation entries it applies.
Prior to this patch, RuntimeDyldImpl::resolveExternalSymbols discarded
relocations for external symbols once they had been applied. This causes issues
if the client calls MCJIT::finalizeLoadedModules more than once, and updates the
location of any symbols in between (e.g. by calling MCJIT::mapSectionAddress).
No test case yet: None of our in-tree memory managers support moving sections
around. I'll have to hack up a dummy memory manager before I can write a unit
test.
Fixes <rdar://problem/16764378>
llvm-svn: 208257
A bunch of switch cases were missing, not just for ARM64 but also for
AArch64_BE. I've fixed all those, but there's zero testing as
ExecutionEngine tests are disabled when crosscompiling and I don't
have a native platform available to test on.
llvm-svn: 207626
This starts in MCJIT::getSymbolAddress where the
unique_ptr<object::Binary> is release()d and (after a cast) passed to a
single caller, MCJIT::addObjectFile.
addObjectFile calls RuntimeDyld::loadObject.
RuntimeDld::loadObject calls RuntimeDyldELF::createObjectFromFile
And the pointer is never owned at this point. I say this point, because
the alternative codepath, RuntimeDyldMachO::createObjectFile certainly
does take ownership, so this seemed like a good hint that this was a/the
right place to take ownership.
llvm-svn: 207580
We normally don't drop functions from the C API's, but in this case I think we
can:
* The old implementation of getFileOffset was fairly broken
* The introduction of LLVMGetSymbolFileOffset was itself a C api breaking
change as it removed LLVMGetSymbolOffset.
* It is an incredibly specialized use case. The only reason MCJIT needs it is
because of its odd position of being a dynamic linker of .o files.
llvm-svn: 206750
Some targets require more than one relocation entry to perform a relocation.
This change allows processRelocationRef to process more than one relocation
entry at a time by passing the relocation iterator itself instead of just
the relocation entry.
Related to <rdar://problem/16199095>
llvm-svn: 204439
RTDyldMemoryManager, regardless of whether it thinks they're "required for
execution".
Currently, RuntimeDyld only passes sections that are "required for execution"
to the RTDyldMemoryManager, and takes "required for execution" to mean exactly
"contains symbols or relocations". There are two problems with this:
(1) It can drop sections with anonymous data that is referenced by code.
(2) It leaves the JIT client no way to inspect interesting sections that aren't
actually required to run the program (e.g dwarf sections).
A test case is still in the works.
Future work: We may want to replace this with a generic section filtering
mechanism, but that will require more consideration. For now, this flag at least
allows clients to volunteer to do the filtering themselves.
Fixes <rdar://problem/15177691>.
llvm-svn: 204398
relevant subclasses of RuntimeDyldImpl. This allows construction of
RuntimeDyldImpl instances to be deferred until after the target architecture is
known.
llvm-svn: 203352
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
required for all sections in a module. This can be useful when targets or
code-models place strict requirements on how sections must be laid out
in memory.
If RTDyldMemoryManger::needsToReserveAllocationSpace() is overridden to return
true then the JIT will call the following method on the memory manager, which
can be used to preallocate the necessary memory.
void RTDyldMemoryManager::reserveAllocationSpace(uintptr_t CodeSize,
uintptr_t DataSizeRO,
uintptr_t DataSizeRW)
Patch by Vaidas Gasiunas. Thanks very much Viadas!
llvm-svn: 201259
uintptr_t. An unsigned could overflow for large sections.
No test case - anything big enough to overflow an unsigned is going to take an
appreciable time to zero when the test passes.
The choice of uintptr_t was made to match the RTDyldMemoryManager APIs, but
these should probably be hardcoded to uint64_ts: It is legitimate to JIT for
64-bit targets from a 32-bit host/compiler.
llvm-svn: 201127
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
llvm-svn: 200442
I believe the bot failures on linux systems were due to overestimating the
alignment of object-files within archives, which are only guaranteed to be
two-byte aligned. I have reduced the alignment in
RuntimeDyldELF::createObjectImageFromFile accordingly.
llvm-svn: 198737
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
Some background: One can pass compiled resource files (.res files) directly
to the linker on Windows. If a resource file is given, the linker will run
"cvtres" command in background to convert the resource file to a COFF file
to link it.
What I'm trying to do with this patch is to make the linker to recognize
the resource file by file magic, so that it can run cvtres command.
Differential Revision: http://llvm-reviews.chandlerc.com/D1943
llvm-svn: 192742
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
Tests to follow.
PIC with small code model and EH frame handling will not work with multiple modules. There are also some rough edges to be smoothed out for remote target support.
llvm-svn: 191722
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
llvm-svn: 187179
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
llvm-svn: 182908
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407 and r182411. That first revision
broke builds because I forgot to move the conditional includes of
various POSIX headers from SectionMemoryManager into
RTDyldMemoryManager. Those includes are necessary because of how
getPointerToNamedFunction works around the glibc libc_nonshared.a thing.
The latter revision still broke things because I forgot to include
llvm/Config/config.h.
llvm-svn: 182418
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407. That revision broke builds because I
forgot to move the conditional includes of various POSIX headers from
SectionMemoryManager into RTDyldMemoryManager. Those includes are
necessary because of how getPointerToNamedFunction works around the
glibc libc_nonshared.a thing.
llvm-svn: 182411
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
llvm-svn: 182407
This gets exception handling working on ELF and Macho (x86-64 at least).
Other than the EH frame registration, this patch also implements support
for GOT relocations which are used to locate the personality function on
MachO.
llvm-svn: 181167
As with global accesses, external functions could exist anywhere in
memory. Therefore the stub must create a complete 64-bit address. This
patch implements the fragment as (roughly):
movz x16, #:abs_g3:somefunc
movk x16, #:abs_g2_nc:somefunc
movk x16, #:abs_g1_nc:somefunc
movk x16, #:abs_g0_nc:somefunc
br x16
In principle we could save 4 bytes by using a literal-load instead,
but it is unclear that would be more efficient and can only be tested
when real hardware is readily available.
This allows (for example) the MCJIT test 2003-05-07-ArgumentTest to
pass on AArch64.
llvm-svn: 181133
Another step towards reinstating the SystemZ backend. I'll commit
the configure changes separately (TARGET_HAS_JIT etc.), then commit
a patch to enable the MCJIT tests on SystemZ.
llvm-svn: 181015
For regular object files this is only meaningful for common symbols. An object
file format with direct support for atoms should be able to provide alignment
information for all symbols.
This replaces getCommonSymbolAlignment and fixes
test-common-symbols-alignment.ll on darwin. This also includes a fix to
MachOObjectFile::getSymbolFlags. It was marking undefined symbols as common
(already tested by existing mcjit tests now that it is used).
llvm-svn: 180736
For MachO we need information that is not represented in ObjRelocationInfo.
Instead of copying the bits we think are needed from a relocation_iterator,
just pass the relocation_iterator down to the format specific functions.
No functionality change yet as we still drop the information once
processRelocationRef returns.
llvm-svn: 180711
This small change adds support for that. It will make all MCJIT tests pass
in make-check on BigEndian platforms.
Patch by Petar Jovanovic.
llvm-svn: 169178
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
all symbols during object loading, not just global ones.
This fixes JIT execution of code using llvm.global_ctors with internal
linkage constructors.
llvm-svn: 168148
Prior to this patch RuntimeDyld attempted to re-apply relocations every time reassignSectionAddress was called (via MCJIT::mapSectionAddress). In addition to being inefficient and redundant, this led to a problem when a section was temporarily moved too far away from another section with a relative relocation referencing the section being moved. To fix this, I'm adding a new method (finalizeObject) which the client can call to indicate that it is finished rearranging section addresses so the relocations can safely be applied.
llvm-svn: 167400