https://reviews.llvm.org/D126446 added support for encoding
binary blobs in MLIR assembly. To enable cross-architecture
compatibility, these need to be encoded in little-endian format.
This patch is a first step in that direction by reading and
writing the alignment tag that those blobs are prefixed by
in little-endian format. This fixes assertion failures in
several test cases on big-endian platforms.
The actual content of the blob is not yet handled here.
Differential Revision: https://reviews.llvm.org/D129483
This required changing a bit of how attributes/types are parsed. A new
`KeywordSwitch` class was added to AsmParser that provides a StringSwitch
like API for parsing keywords with a set of potential matches. It intends to
both provide a cleaner API, and enable injection for code completion. This
required changing the API of `generated(Attr|Type)Parser` to handle the
parsing of the keyword, instead of having the user do it. Most upstream
dialects use the autogenerated handling and didn't require a direct update.
Differential Revision: https://reviews.llvm.org/D129267
This commit adds code completion results to the MLIR LSP when
parsing keywords. Keyword support is currently limited to the
case where the expected keyword is provided, but a followup will
work on expanding the set of keyword cases we handle (e.g. to
allow capturing attribute/type mnemonics).
Differential Revision: https://reviews.llvm.org/D129184
This commit adds code completion results to the MLIR LSP using
a new code completion context in the MLIR parser. This commit
adds initial completion for dialect, operation, SSA value, and
block names.
Differential Revision: https://reviews.llvm.org/D129183
This commit refactors the syntax of "ugly" attribute/type formats to not use
strings for wrapping. This means that moving forward attirbutes and type formats
will always need to be in some recognizable form, i.e. if they use incompatible
characters they will need to manually wrap those in a string, the framework will
no longer do it automatically.
This has the benefit of greatly simplifying how parsing attributes/types work, given
that we currently rely on some extremely complicated nested parser logic which is
quite problematic for a myriad of reasons; unecessary complexity(we create a nested
source manager/lexer/etc.), diagnostic locations can be off/wrong given string escaping,
etc.
Differential Revision: https://reviews.llvm.org/D118505
This patch extends the affine parser to allow affine constraints with `<=`.
This is useful in writing unittests for Presburger library and test in general.
The internal storage and printing of IntegerSet is still in the original format.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D129046
Currently, the parser for IntegerSet, only allows constraints like:
```
affine-constraint ::= affine-expr `>=` `0`
| affine-expr `==` `0`
```
This form is sometimes unreadable and painful to use when writing unittests
for Presburger library and tests in general.
This patch extends the parser to allow affine constraints with affine-expr on
the RHS:
```
affine-constraint ::= affine-expr `>=` `affine-expr`
| affine-expr `==` `affine-expr`
```
The internal storage and printing of IntegerSet is still in the original format.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D128915
This commit enables support for providing and processing external
resources within MLIR assembly formats. This is a mechanism with which
dialects, and external clients, may attach additional information when
printing IR without that information being encoded in the IR itself.
External resources are not uniqued within the MLIR context, are not
attached directly to any operation, and are solely intended to live and be
processed outside of the immediate IR. There are many potential uses of this
functionality, for example MLIR's pass crash reproducer could utilize this to
attach the pass resource executing when a crash occurs. Other types of
uses may be embedding large amounts of binary data, such as weights in ML
applications, that shouldn't be copied directly into the MLIR context, but
need to be kept adjacent to the IR.
External resources are encoded using a key-value pair nested within a
dictionary anchored by name either on a dialect, or an externally registered
entity. The key is an identifier used to disambiguate the data. The value
may be stored in various limited forms, but general encodings use a string
(human readable) or blob format (binary). Within the textual format, an
example may be of the form:
```mlir
{-#
// The `dialect_resources` section within the file-level metadata
// dictionary is used to contain any dialect resource entries.
dialect_resources: {
// Here is a dictionary anchored on "foo_dialect", which is a dialect
// namespace.
foo_dialect: {
// `some_dialect_resource` is a key to be interpreted by the dialect,
// and used to initialize/configure/etc.
some_dialect_resource: "Some important resource value"
}
},
// The `external_resources` section within the file-level metadata
// dictionary is used to contain any non-dialect resource entries.
external_resources: {
// Here is a dictionary anchored on "mlir_reproducer", which is an
// external entity representing MLIR's crash reproducer functionality.
mlir_reproducer: {
// `pipeline` is an entry that holds a crash reproducer pipeline
// resource.
pipeline: "func.func(canonicalize,cse)"
}
}
```
Differential Revision: https://reviews.llvm.org/D126446
This attribute is similar to DenseElementsAttr but does not support
splat. As such it has a much simpler API and does not need any smart
iterator: it exposes direct ArrayRef access.
A new syntax is introduced so that the generic printing/parsing looks
like:
[:i64 1, -2, 3]
This attribute beings like an ArrayAttr but has a `:` token after the
opening square brace to introduce the element type (supported are I8,
I16, I32, I64, F32, F64) and the comma separated list for the data.
This is particularly convenient for attributes intended to be small,
like those referring to shapes.
For example a `transpose` operation with a `dims` attribute could be
defined as such:
let arguments = (ins AnyTensor:$input, DenseI64ArrayAttr:$dims);
let assemblyFormat = "$input `dims` `=` $dims attr-dict : type($input)";
And printed this way (the element type is elided in this case):
transpose %input dims = [0, 2, 1] : tensor<2x3x4xf32>
The C++ API for dims would just directly return an ArrayRef<int64>
RFC: https://discourse.llvm.org/t/rfc-introduce-a-new-dense-array-attribute/63279
Recommit with a custom DenseArrayBaseAttrStorage class to ensure
over-alignment of the storage to the largest type.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123774
This attribute is similar to DenseElementsAttr but does not support
splat. As such it has a much simpler API and does not need any smart
iterator: it exposes direct ArrayRef access.
A new syntax is introduced so that the generic printing/parsing looks
like:
[:i64 1, -2, 3]
This attribute beings like an ArrayAttr but has a `:` token after the
opening square brace to introduce the element type (supported are I8,
I16, I32, I64, F32, F64) and the comma separated list for the data.
This is particularly convenient for attributes intended to be small,
like those referring to shapes.
For example a `transpose` operation with a `dims` attribute could be
defined as such:
let arguments = (ins AnyTensor:$input, DenseI64ArrayAttr:$dims);
let assemblyFormat = "$input `dims` `=` $dims attr-dict : type($input)";
And printed this way (the element type is elided in this case):
transpose %input dims = [0, 2, 1] : tensor<2x3x4xf32>
The C++ API for dims would just directly return an ArrayRef<int64>
RFC: https://discourse.llvm.org/t/rfc-introduce-a-new-dense-array-attribute/63279
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123774
The parser currently can't parse bare identifiers like 'i0' in affine
maps and sets, and similarly ids like f16/f32. But these bare ids are
part of the grammar - although they are primitive types.
```
error: expected bare identifier
set = affine_set<(i0, i1) : ()>
^
```
This patch allows the parser for AffineMap/IntegerSet to parse bare
identifiers as defined by the grammer.
Reviewed By: bondhugula, rriddle
Differential Revision: https://reviews.llvm.org/D127076
This was carry over from LLVM IR where the alias definition can
be ambiguous, but MLIR type aliases have no such problems.
Having the `type` keyword is superfluous and doesn't add anything.
This commit drops it, which also nicely aligns with the syntax for
attribute aliases (which doesn't have a keyword).
Differential Revision: https://reviews.llvm.org/D125501
The warning caused build errors on a couple flang testers that are
building with -Werror. The diagnostic change makes the generated
error correct.
This is a followup to https://reviews.llvm.org/D125549
Differential Revision: https://reviews.llvm.org/D125587
There are a lot of cases where we accidentally ignored the result of some
parsing hook. Mark ParseResult as LLVM_NODISCARD just like ParseResult is.
This exposed some stuff to clean up, so do.
Differential Revision: https://reviews.llvm.org/D125549
Instead of requiring the client to compute the "isSplat" bit,
compute it internally. This makes the logic more consistent
and defines away a lot of "elements.size()==1" in the clients.
This addresses Issue #55185
Differential Revision: https://reviews.llvm.org/D125447
When a custom operation is unknown and does not have a dialect prefix, we currently
emit an error using the name of the operation with the default dialect prefix. This
leads to a confusing error message, especially when operations get moved between dialects.
For example, `func` was recently moved out of `builtin` and to the `func` dialect. The current
error message we get is:
```
func @foo()
^ custom op 'builtin.func' is unknown
```
This could lead users to believe that there is supposed to be a `builtin.func`,
because there used to be. This commit adds a better error message that does
not assume that the operation is supposed to be in the default dialect:
```
func @foo()
^ custom op 'func' is unknown (tried 'builtin.func' as well)
```
Differential Revision: https://reviews.llvm.org/D125351
This is a full audit of emitError calls, I took the opportunity
to remove extranous parens and fix a couple cases where we'd
generate multiple diagnostics for the same error.
Differential Revision: https://reviews.llvm.org/D125355
Change the parsing logic to use StringRef instead of lower level
char* logic. Also, if emitting a diagnostic on the first token
in the file, we make sure to use that position instead of the
very start of the file.
Differential Revision: https://reviews.llvm.org/D125353
A typical problem with missing a token is that the missing
token is at the end of a line. The problem with this is that
the error message gets reported on the start of the following
line (which is where the next / invalid token is) which can
be confusing.
Handle this by noticing this case and backing up to the end of
the previous line.
Differential Revision: https://reviews.llvm.org/D125295
This was leftover from when the standard dialect was destroyed, and
when FuncOp moved to the func dialect. Now that these transitions
have settled a bit we can drop these.
Most updates were handled using a simple regex: replace `^( *)func` with `$1func.func`
Differential Revision: https://reviews.llvm.org/D124146
The fallback attribute parse path is parsing a Type attribute, but this results
in a really unintuitive error message: `expected non-function type`, which
doesn't really hint at tall that we were trying to parse an attribute. This
commit fixes this by trying to optionally parse a type, and on failure
emitting an error that we were expecting an attribute.
Differential Revision: https://reviews.llvm.org/D124870
MLIR has a common pattern for "arguments" that uses syntax
like `%x : i32 {attrs} loc("sourceloc")` which is implemented
in adhoc ways throughout the codebase. The approach this uses
is verbose (because it is implemented with parallel arrays) and
inconsistent (e.g. lots of things drop source location info).
Solve this by introducing OpAsmParser::Argument and make addRegion
(which sets up BlockArguments for the region) take it. Convert the
world to propagating this down. This means that we correctly
capture and propagate source location information in a lot more
cases (e.g. see the affine.for testcase example), and it also
simplifies much code.
Differential Revision: https://reviews.llvm.org/D124649
SourceMgr generally uses 1-based locations, whereas the LSP is zero based.
This commit corrects this conversion and also enhances the conversion from SMLoc
to SMRange to support string tokens.
Differential Revision: https://reviews.llvm.org/D124584
I would ideally like to eliminate 'requiredOperandCount' as a bit of
verification that should be in the client side, but it is much more
widely used than I expected. Just tidy some pieces up around it given
we can't drop it immediately.
NFC.
Differential Revision: https://reviews.llvm.org/D124629
The asm parser had a notional distinction between parsing an
operand (like "%foo" or "%4#3") and parsing a region argument
(which isn't supposed to allow a result number like #3).
Unfortunately the implementation has two problems:
1) It didn't actually check for the result number and reject
it. parseRegionArgument and parseOperand were identical.
2) It had a lot of machinery built up around it that paralleled
operand parsing. This also was functionally identical, but
also had some subtle differences (e.g. the parseOptional
stuff had a different result type).
I thought about just removing all of this, but decided that the
missing error checking was important, so I reimplemented it with
a `allowResultNumber` flag on parseOperand. This keeps the
codepaths unified and adds the missing error checks.
Differential Revision: https://reviews.llvm.org/D124470
This diff allows the EnumAttr class to be used for bit enum attributes (in
addition to previously supported integer enum attributes). While integer
and bit enum attributes share many common implementation aspects, parsing
bit enum values requires a separate implementation. This is accomplished
by creating empty parser and printer strings in the EnumAttrInfo record,
and having derived classes (specific to bit and integer enums) override with
an appropriate parser/printer string.
To support existing bit enums that may use a vertical bar separator, the
parser is modified to support the | token.
Tests were added for bit enums alongside integer enums.
Future diffs for fastmath attributes in the arithmetic dialect will use these
changes.
(resubmission of earlier abaondoned diff, updated to reflect subsequent changes
in the repository)
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D123880
When Location tracking support for block arguments was added, we
discussed various approaches to threading support for this through
function-like argument parsing. At the time, we added a parallel array
of locations that could hold this. It turns out that that approach was
verbose and error prone, roughly no one adopted it.
This patch takes a different approach, adding an optional source
locator to the UnresolvedOperand class. This fits much more naturally
into the standard structure we use for representing locators, and gives
all the function like dialects locator support for free (e.g. see the
test adding an example for the LLVM dialect).
Differential Revision: https://reviews.llvm.org/D124188
Reproducers that resulted in triggering the following asserts
mlir::NamedAttribute::NamedAttribute(mlir::StringAttr, mlir::Attribute)
mlir/lib/IR/Attributes.cpp:29:3
consumeToken
mlir/lib/Parser/Parser.h:126
Differential Revision: https://reviews.llvm.org/D122240
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.
To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.
This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.
Differential Revision: https://reviews.llvm.org/D122775
A Block is optionally allocated & leaks in case of failed parse. Inline the
function and ensure Block gets freed unless parse is successful.
Differential Revision: https://reviews.llvm.org/D122112
This provides a way to create an operation without manipulating
OperationState directly. This is useful for creating unregistered ops.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D120787
Emitting at error at EOF will emit the diagnostic past the end of the file. When emitting an error during parsing at EOF, emit it at the previous character.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122295
I am not sure about the meaning of Type in the name (was it meant be interpreted as Kind?), and given the importance and meaning of Type in the context of MLIR, its probably better to rename it. Given the comment in the source code, the suggestion in the GitHub issue and the final discussions in the review, this patch renames the OperandType to UnresolvedOperand.
Fixes https://github.com/llvm/llvm-project/issues/54446
Differential Revision: https://reviews.llvm.org/D122142
dense<...> expects ... to be a tensor-literal.
Define this in the grammar in BuiltinAttributes.td,
and reflect this in the reference grammar written in
AttributeParser.cpp.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D121048
There is no reason for this file to be at the top-level, and
its current placement predates the Parser/ folder's existence.
Differential Revision: https://reviews.llvm.org/D121024