Commit Graph

294 Commits

Author SHA1 Message Date
Benjamin Kramer d477e9e378 Revert "Allow X86::COND_NE_OR_P and X86::COND_NP_OR_E to be reversed."
and "Add a missing test case for r258847."

This reverts commit r258847, r258848. Causes miscompilations and backend
errors.

llvm-svn: 258927
2016-01-27 12:44:12 +00:00
Cong Hou 551a57f797 Allow X86::COND_NE_OR_P and X86::COND_NP_OR_E to be reversed.
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:

jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...

AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:

jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...

However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.

Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.

In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.


Differential Revision: http://reviews.llvm.org/D11393

llvm-svn: 258847
2016-01-26 20:08:01 +00:00
David Majnemer 869be0a4a6 Revert "[X86] Use push-pop for materializing small constants under 'minsize'"
The red zone consists of 128 bytes beyond the stack pointer so that the
allocation of objects in leaf functions doesn't require decrementing
rsp.  In r255656, we introduced an optimization that would cheaply
materialize certain constants via push/pop.  Push decrements the stack
pointer and stores it's result at what is now the top of the stack.
However, this means that using push/pop would encroach on the red zone.
PR26023 gives an example where this corrupts an object in the red zone.

llvm-svn: 256808
2016-01-05 02:32:06 +00:00
Hans Wennborg a6a2e512cf [X86] Use push-pop for materializing small constants under 'minsize'
Use the 3-byte (4 with REX prefix) push-pop sequence for materializing
small constants. This is smaller than using a mov (5, 6 or 7 bytes
depending on size and REX prefix), but it's likely to be slower, so
only used for 'minsize'.

This is a follow-up to r255656.

Differential Revision: http://reviews.llvm.org/D15549

llvm-svn: 255936
2015-12-17 23:18:39 +00:00
Andrew Kaylor 4731bea3e5 Improved the operands commute transformation for X86-FMA3 instructions.
All 3 operands of FMA3 instructions are commutable now.

Patch by Slava Klochkov

Reviewers: Quentin Colombet(qcolombet), Ahmed Bougacha(ab).

Differential Revision: http://reviews.llvm.org/D13269

llvm-svn: 252335
2015-11-06 19:47:25 +00:00
Simon Pilgrim 7e6606f4f1 [X86][SSE] Add general memory folding for (V)INSERTPS instruction
This patch improves the memory folding of the inserted float element for the (V)INSERTPS instruction.

The existing implementation occurs in the DAGCombiner and relies on the narrowing of a whole vector load into a scalar load (and then converted into a vector) to (hopefully) allow folding to occur later on. Not only has this proven problematic for debug builds, it also prevents other memory folds (notably stack reloads) from happening.

This patch removes the old implementation and moves the folding code to the X86 foldMemoryOperand handler. A new private 'special case' function - foldMemoryOperandCustom - has been added to deal with memory folding of instructions that can't just use the lookup tables - (V)INSERTPS is the first of several that could be done.

It also tweaks the memory operand folding code with an additional pointer offset that allows existing memory addresses to be modified, in this case to convert the vector address to the explicit address of the scalar element that will be inserted.

Unlike the previous implementation we now set the insertion source index to zero, although this is ignored for the (V)INSERTPSrm version, anything that relied on shuffle decodes (such as unfolding of insertps loads) was incorrectly calculating the source address - I've added a test for this at insertps-unfold-load-bug.ll

Differential Revision: http://reviews.llvm.org/D13988

llvm-svn: 252074
2015-11-04 20:48:09 +00:00
Benjamin Kramer 5dfcda73d5 [X86] Rip out orphaned method declarations and other dead code. NFC.
llvm-svn: 250406
2015-10-15 14:09:59 +00:00
Andrew Kaylor 16c4da03d5 Improved the interface of methods commuting operands, improved X86-FMA3 mem-folding&coalescing.
Patch by Slava Klochkov (vyacheslav.n.klochkov@intel.com)

Differential Revision: http://reviews.llvm.org/D11370

llvm-svn: 248735
2015-09-28 20:33:22 +00:00
Chad Rosier 03a47305ec [Machine Combiner] Refactor machine reassociation code to be target-independent.
No functional change intended.
Patch by Haicheng Wu <haicheng@codeaurora.org>!

http://reviews.llvm.org/D12887
PR24522

llvm-svn: 248164
2015-09-21 15:09:11 +00:00
Andrew Kaylor af083d4cf9 Expose hasLiveCondCodeDef as a member function of the X86InstrInfo class. NFC
This takes the existing static function hasLiveCondCodeDef and makes it a member function of the X86InstrInfo class. This is a useful utility function that an upcoming change would like to use. NFC.

Patch by: Kevin B. Smith
Differential Revision: http://reviews.llvm.org/D12371

llvm-svn: 246073
2015-08-26 20:36:52 +00:00
Alex Lorenz 49873a8382 MIR Serialization: Initial serialization of the machine operand target flags.
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.

This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.

Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
2015-08-06 00:44:07 +00:00
Simon Pilgrim ba51d116c4 Remove TargetInstrInfo::canFoldMemoryOperand
canFoldMemoryOperand is not actually used anywhere in the codebase - all existing users instead call foldMemoryOperand directly when they wish to fold and can correctly deduce what they need from the return value. 

This patch removes the canFoldMemoryOperand base function and the target implementations; only x86 had a real (bit-rotted) implementation, although AMDGPU had a preparatory stub that had never needed to be completed.

Differential Revision: http://reviews.llvm.org/D11331

llvm-svn: 242638
2015-07-19 10:50:53 +00:00
Alexander Kornienko f00654e31b Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.

llvm-svn: 240390
2015-06-23 09:49:53 +00:00
Sanjay Patel cfe0393b82 name change: hasPattern() -> getMachineCombinerPatterns() ; NFC
This was suggested as part of D10460, but it's independent of
any functional change.

llvm-svn: 240192
2015-06-19 23:21:42 +00:00
Alexander Kornienko 70bc5f1398 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!

llvm-svn: 240137
2015-06-19 15:57:42 +00:00
Sanjoy Das 6b34a46298 [TargetInstrInfo] Add new hook: AnalyzeBranchPredicate.
Summary:
NFC: no one uses AnalyzeBranchPredicate yet.

Add TargetInstrInfo::AnalyzeBranchPredicate and implement for x86.  A
later change adding support for page-fault based implicit null checks
depends on this.

Reviewers: reames, ab, atrick

Reviewed By: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10200

llvm-svn: 239742
2015-06-15 18:44:21 +00:00
Sanjoy Das b666ea369c [TargetInstrInfo] Rename getLdStBaseRegImmOfs and implement for x86.
Summary:

TargetInstrInfo::getLdStBaseRegImmOfs to
TargetInstrInfo::getMemOpBaseRegImmOfs and implement for x86.  The
implementation only handles a few easy cases now and will be made more
sophisticated in the future.

This is NFCI: the only user of `getLdStBaseRegImmOfs` (now
`getmemOpBaseRegImmOfs`) is `LoadClusterMotion` and `LoadClusterMotion`
is disabled for x86.

Reviewers: reames, ab, MatzeB, atrick

Reviewed By: MatzeB, atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10199

llvm-svn: 239741
2015-06-15 18:44:14 +00:00
Matthias Braun 88e213159a MachineLICM: Use TargetSchedModel instead of just itineraries
This will use Itinieraries if available, but will also work if just a
MCSchedModel is available.

Differential Revision: http://reviews.llvm.org/D10428

llvm-svn: 239658
2015-06-13 03:42:11 +00:00
Ahmed Bougacha c88bf54366 [CodeGen] ArrayRef'ize cond/pred in various TII APIs. NFC.
llvm-svn: 239553
2015-06-11 19:30:37 +00:00
Sanjay Patel 08829bac81 [x86] Add a reassociation optimization to increase ILP via the MachineCombiner pass
This is a reimplementation of D9780 at the machine instruction level rather than the DAG.

Use the MachineCombiner pass to reassociate scalar single-precision AVX additions (just a
starting point; see the TODO comments) to increase ILP when it's safe to do so.

The code is closely based on the existing MachineCombiner optimization that is implemented
for AArch64.

This patch should not cause the kind of spilling tragedy that led to the reversion of r236031.

Differential Revision: http://reviews.llvm.org/D10321

llvm-svn: 239486
2015-06-10 20:32:21 +00:00
Keno Fischer e70b31fc1b [InstrInfo] Refactor foldOperandImpl to thread through InsertPt. NFC
Summary:
This was a longstanding FIXME and is a necessary precursor to cases
where foldOperandImpl may have to create more than one instruction
(e.g. to constrain a register class). This is the split out NFC changes from
D6262.

Reviewers: pete, ributzka, uweigand, mcrosier

Reviewed By: mcrosier

Subscribers: mcrosier, ted, llvm-commits

Differential Revision: http://reviews.llvm.org/D10174

llvm-svn: 239336
2015-06-08 20:09:58 +00:00
Benjamin Kramer f1362f6196 ArrayRefize memory operand folding. NFC.
llvm-svn: 230846
2015-02-28 12:04:00 +00:00
Michael Kuperstein 13fbd45263 [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

(Re-commit of r227728)

Differential Revision: http://reviews.llvm.org/D6789

llvm-svn: 227752
2015-02-01 16:56:04 +00:00
Michael Kuperstein e86aa9a8a4 Revert r227728 due to bad line endings.
llvm-svn: 227746
2015-02-01 16:15:07 +00:00
Michael Kuperstein bd57186c76 [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

Differential Revision: http://reviews.llvm.org/D6789

llvm-svn: 227728
2015-02-01 11:44:44 +00:00
JF Bastien eeea8970b4 Revert "Insert random noops to increase security against ROP attacks (llvm)"
This reverts commit:
http://reviews.llvm.org/D3392

llvm-svn: 225948
2015-01-14 05:24:33 +00:00
JF Bastien dcdd5ad252 Insert random noops to increase security against ROP attacks (llvm)
A pass that adds random noops to X86 binaries to introduce diversity with the goal of increasing security against most return-oriented programming attacks.

Command line options:
  -noop-insertion // Enable noop insertion.
  -noop-insertion-percentage=X // X% of assembly instructions will have a noop prepended (default: 50%, requires -noop-insertion)
  -max-noops-per-instruction=X // Randomly generate X noops per instruction. ie. roll the dice X times with probability set above (default: 1). This doesn't guarantee X noop instructions.

In addition, the following 'quick switch' in clang enables basic diversity using default settings (currently: noop insertion and schedule randomization; it is intended to be extended in the future).
  -fdiversify

This is the llvm part of the patch.
clang part: D3393

http://reviews.llvm.org/D3392
Patch by Stephen Crane (@rinon)

llvm-svn: 225908
2015-01-14 01:07:26 +00:00
Robert Khasanov 79fb7292d7 [AVX512] Enable FP arithmetic lowering for AVX512VL subsets.
Added RegOp2MemOpTable4 to transform 4th operand from register to memory in merge-masked versions of instructions. 
Added lowering tests.

llvm-svn: 224516
2014-12-18 12:28:22 +00:00
Tom Roeder eb7a303d1b Add Forward Control-Flow Integrity.
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.

This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.

Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.

Review: http://reviews.llvm.org/D4167
llvm-svn: 221708
2014-11-11 21:08:02 +00:00
Simon Pilgrim 2f9548a3ef [X86] Memory folding for commutative instructions (updated)
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.

Updated version of r219584 (reverted in r219595) - the commutation attempt now explicitly ensures that neither of the commuted source operands are tied to the destination operand / register, which was the source of all the regressions that occurred with the original patch attempt.

Added additional regression test case provided by Joerg Sonnenberger.

Differential Revision: http://reviews.llvm.org/D5818

llvm-svn: 220239
2014-10-20 22:14:22 +00:00
NAKAMURA Takumi 75a0240056 Revert r219584, "[X86] Memory folding for commutative instructions."
It broke i686 selfhosting.

llvm-svn: 219595
2014-10-13 04:17:34 +00:00
Simon Pilgrim 77ac26d279 [X86] Memory folding for commutative instructions.
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.

This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.

Differential Revision: http://reviews.llvm.org/D5701

llvm-svn: 219584
2014-10-12 10:52:55 +00:00
Benjamin Kramer a7c40ef022 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

llvm-svn: 215558
2014-08-13 16:26:38 +00:00
Juergen Ributzka 6ef06f9159 [FastISel][X86] Optimize selects when the condition comes from a compare.
Optimize the select instructions sequence to use the EFLAGS directly from a
compare when possible.

llvm-svn: 211543
2014-06-23 21:55:36 +00:00
Juergen Ributzka 2da1bbc113 [FastISel][X86] Refactor the code to get the X86 condition from a helper function. NFC.
Make use of helper functions to simplify the branch and compare instruction
selection in FastISel. Also add test cases for compare and conditonal branch.

llvm-svn: 211077
2014-06-16 23:58:24 +00:00
Eric Christopher 6c786a1dd1 Remove the use of TargetMachine from X86InstrInfo.
llvm-svn: 210596
2014-06-10 22:34:31 +00:00
Tom Roeder 44cb65fff1 Add a new attribute called 'jumptable' that creates jump-instruction tables for functions marked with this attribute.
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.

This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.

llvm-svn: 210280
2014-06-05 19:29:43 +00:00
Alexey Volkov 6226de6721 [X86] Tune LEA usage for Silvermont
According to Intel Software Optimization Manual on Silvermont in some cases LEA
is better to be replaced with ADD instructions:
"The rule of thumb for ADDs and LEAs is that it is justified to use LEA
with a valid index and/or displacement for non-destructive destination purposes
(especially useful for stack offset cases), or to use a SCALE.
Otherwise, ADD(s) are preferable."

Differential Revision: http://reviews.llvm.org/D3826

llvm-svn: 209198
2014-05-20 08:55:50 +00:00
Craig Topper e73658ddbb [C++] Use 'nullptr'.
llvm-svn: 207394
2014-04-28 04:05:08 +00:00
Lang Hames c59a2d0529 [X86] As per suggestion from Craig Topper and Hal Finkel, override
TargetInstrInfo::findCommutedOpIndices to enable VFMA*231 commutation, rather
than abusing commuteInstruction.

Thanks very much for the suggestion guys!

llvm-svn: 205489
2014-04-02 23:57:49 +00:00
Craig Topper ec82847a64 [C++11] Mark more classes in the X86 target as 'final'.
llvm-svn: 205166
2014-03-31 06:53:13 +00:00
Craig Topper c6d4efa1e5 Prune includes in X86 target.
llvm-svn: 204216
2014-03-19 06:53:25 +00:00
Manuel Jacob dcb78dbc82 X86: Use enums for memory operand decoding instead of integer literals.
Summary:
X86BaseInfo.h defines an enum for the offset of each operand in a memory operand
sequence.  Some code uses it and some does not.  This patch replaces (hopefully)
all remaining locations where an integer literal was used instead of this enum.
No functionality change intended.

Reviewers: nadav

CC: llvm-commits, t.p.northover

Differential Revision: http://llvm-reviews.chandlerc.com/D3108

llvm-svn: 204158
2014-03-18 16:14:11 +00:00
Craig Topper f5e3b0b98c De-virtualize some methods since they don't override anything.
llvm-svn: 203379
2014-03-09 07:58:15 +00:00
Craig Topper 2d9361e325 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 203378
2014-03-09 07:44:38 +00:00
Craig Topper 73156025e0 Switch all uses of LLVM_OVERRIDE to just use 'override' directly.
llvm-svn: 202621
2014-03-02 09:09:27 +00:00
Juergen Ributzka d12ccbd343 [weak vtables] Remove a bunch of weak vtables
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.

Differential Revision: http://llvm-reviews.chandlerc.com/D2068

Reviewed by Andy

llvm-svn: 195064
2013-11-19 00:57:56 +00:00
Alexey Samsonov 49109a279c Revert r194865 and r194874.
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
  Base *foo = new Child();
  delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.

llvm-svn: 194997
2013-11-18 09:31:53 +00:00
Juergen Ributzka dbedae89b9 [weak vtables] Remove a bunch of weak vtables
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.

Differential Revision: http://llvm-reviews.chandlerc.com/D2068

Reviewed by Andy

llvm-svn: 194865
2013-11-15 22:34:48 +00:00
Andrew Trick b6d56be69d Fix the ExecutionDepsFix pass to handle AVX instructions.
This pass is needed to break false dependencies. Without it, unlucky
register assignment can result in wild (5x) swings in
performance. This pass was trying to handle AVX but not getting it
right. AVX doesn't have partial register defs, it has unused register
reads in which the high bits of a source operand are copied into the
unused bits of the dest.

Fixing this requires conservative liveness analysis. This is awkard
because the pass already has its own pseudo-liveness. However, proper
liveness is expensive, and we would like to use a generic utility to
compute it. The fix only invokes liveness on-demand. It is rare to
detect a case that needs undef-read dependence breaking, but when it
happens, it can be needed many times within a very large block.

I think the existing heuristic which uses a register window of 16 is
too conservative for loop-carried false dependencies. If the loop is a
reduction. The out-of-order engine may be able to execute several loop
iterations in parallel. However, I'll leave this tuning exercise for
next time.

llvm-svn: 192635
2013-10-14 22:19:03 +00:00