While sanitizers don't use C++ standard library, we could still end
up accidentally including or linking it just by the virtue of using
the C++ compiler. Pass -nostdinc++ and -nostdlib++ to avoid these
accidental dependencies.
Differential Revision: https://reviews.llvm.org/D88922
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
VE doesn't have SHL_PARTS/SRA_PARTS/SRL_PARTS instructions, so need
to expand them. Add regression tests too.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89396
These cause problems for later optimizations, just using an unused vreg like
SelectionDAG generates better code in the end, and obviates the need for some
GISel specific flag optimizations.
Differential Revision: https://reviews.llvm.org/D89419
AlignedCharArrayUnion is really only needed to handle the "union" case
when we need memory of suitable size and alignment for multiple types.
SmallVector only needs storage for one type, so use that directly.
The argument passed to the preprocessor macros `NS_SWIFT_NAME(x)` and
`CF_SWIFT_NAME(x)` is stringified before passing to
`__attribute__((swift_name("x")))`.
ClangFormat didn't know about this stringification, so its custom parser
tried to parse the argument(s) passed to the macro as if they were
normal function arguments.
That means ClangFormat currently incorrectly inserts whitespace
between `NS_SWIFT_NAME` arguments with colons and dots, so:
```
extern UIWindow *MainWindow(void) NS_SWIFT_NAME(getter:MyHelper.mainWindow());
```
becomes:
```
extern UIWindow *MainWindow(void) NS_SWIFT_NAME(getter : MyHelper.mainWindow());
```
which clang treats as a parser error:
```
error: 'swift_name' attribute has invalid identifier for context name [-Werror,-Wswift-name-attribute]
```
Thankfully, D82620 recently added the ability to treat specific macros
as "whitespace sensitive", meaning their arguments are implicitly
treated as strings (so whitespace is not added anywhere inside).
This diff adds `NS_SWIFT_NAME` and `CF_SWIFT_NAME` to
`WhitespaceSensitiveMacros` so their arguments are implicitly treated
as whitespace-sensitive.
Test Plan:
New tests added. Ran tests with:
% ninja FormatTests && ./tools/clang/unittests/Format/FormatTests
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D89425
The current fusion on tensors fuses reshape ops with generic ops by
linearizing the indexing maps of the fused tensor in the generic
op. This has some limitations
- It only works for static shapes
- The resulting indexing map has a linearization that would be
potentially prevent fusion later on (for ex. tile + fuse).
Instead, try to fuse the reshape consumer (producer) with generic op
producer (consumer) by expanding the dimensionality of the generic op
when the reshape is expanding (folding). This approach conflicts with
the linearization approach. The expansion method is used instead of
the linearization method.
Further refactoring that changes the fusion on tensors to be a
collection of patterns.
Differential Revision: https://reviews.llvm.org/D89002
Remove `ContentCache::getBuffer`, which always returned a
dereferenceable `MemoryBuffer*` and had a `bool*Invalid` out parameter,
and replace it with:
- `ContentCache::getBufferOrNone`, which returns
`Optional<MemoryBufferRef>`. This is the new API that consumers should
use. Later it could be renamed to `getBuffer`, but intentionally using
a different name to root out any unexpected callers.
- `ContentCache::getBufferPointer`, which returns `MemoryBuffer*` with
"optional" semantics. This is `private` to avoid growing callers and
`SourceManager` has temporarily been made a `friend` to access it.
Later paches will update the transitive callers to not need a raw
pointer, and eventually this will be deleted.
No functionality change intended here.
Differential Revision: https://reviews.llvm.org/D89348
This implements the flag proposed in RFC http://lists.llvm.org/pipermail/cfe-dev/2020-August/066437.html.
The goal is to add a way to override the default target C++ ABI through
a compiler flag. This makes it easier to test and transition between different
C++ ABIs through compile flags rather than build flags.
In this patch:
- Store `-fc++-abi=` in a LangOpt. This isn't stored in a
CodeGenOpt because there are instances outside of codegen where Clang
needs to know what the ABI is (particularly through
ASTContext::createCXXABI), and we should be able to override the
target default if the flag is provided at that point.
- Expose the existing ABIs in TargetCXXABI as values that can be passed
through this flag.
- Create a .def file for these ABIs to make it easier to check flag
values.
- Add an error for diagnosing bad ABI flag values.
Differential Revision: https://reviews.llvm.org/D85802
After using this for a while, we find that it is generally useful to
have it set to .text.split. by default, removing the need for an
additional -mllvm option.
Differential Revision: https://reviews.llvm.org/D88997
Currently we add individual BB to BlockFilterSet if its frequency satisfies
LoopFreq / Freq <= LoopToColdBlockRatio
LoopFreq is edge frequency from outside to loop header.
LoopToColdBlockRatio is a command line parameter.
It doesn't make sense since we always layout whole chain, not individual BBs.
It may also cause a tricky problem. Sometimes it is possible that the LoopFreq
of an inner loop is smaller than LoopFreq of outer loop. So a BB can be in
BlockFilterSet of inner loop, but not in BlockFilterSet of outer loop,
like .cold in the test case. So it is added to the chain of inner loop. When
work on the outer loop, .cold is not added to BlockFilterSet, so the edge to
successor .problem is not counted in UnscheduledPredecessors of .problem chain.
But other blocks in the inner loop are added BlockFilterSet, so the whole inner
loop chain can be layout, and markChainSuccessors is called to decrease
UnscheduledPredecessors of following chains. markChainSuccessors calls
markBlockSuccessors for every BB, even it is not in BlockFilterSet, like .cold,
so .problem chain's UnscheduledPredecessors is decreased, but this edge was not
counted on in fillWorkLists, so .problem chain's UnscheduledPredecessors
becomes 0 when it still has an unscheduled predecessor .pred! And it causes
problems in following various successor BB selection algorithms.
Differential Revision: https://reviews.llvm.org/D89088
XFAIL nodefaultlib.cpp on darwin - the test does not pass there
XFAIL TestGdbRemoteMemoryAllocation on windows - memory is allocated
with incorrect permissions
Recent patch that improved Flang's compatibility with respect to how LLVM
dynamic libraries should be linked (and specified in CMake recipes),
introduced a bug in the definition of `flang-new`:
* https://reviews.llvm.org/D87893
More specifically, `add_flang_tool` does not support the
`LINK_COMPONENTS` CMake argument. Instead, one should set
`LLVM_LINK_COMPONENTS` before calling `add_flang_tool`.
This patch reverts the change for `flang-new` from
https://reviews.llvm.org/D87893, and instead:
* sets `LLVM_LINK_COMPONENTS`
* calls `clang_target_link_libraries` to add Clang dependencies
Differential Revision: https://reviews.llvm.org/D89403
NVPTXLowerArgs works as follows.
* Create a regular alloca with alignment identical to arg.
* Copy arg from param space (and ASC'ing it from generic AS first) to
the alloca (it's still in generic AS).
* Replace loads of arg with loads of alloca.
The bug here is that we did not preserve the arg's alignment when
loading from the alloca.
The impact of this bug is that sometimes param loads would be lowered as
a series of u8 loads, because we're incorrectly assuming everything has
alignment 1.
Differential Revision: https://reviews.llvm.org/D89404
This CL allows user to specify the same name for the operands in the source pattern which implicitly enforces equality on operands with the same name.
E.g., Pat<(OpA $a, $b, $a) ... > would create a matching rule for checking equality for the first and the last operands. Equality of the operands is enforced at any depth, e.g., OpA ($a, $b, OpB($a, $c, OpC ($a))).
Example usage: Pat<(Reshape $arg0, (Shape $arg0)), (replaceWithValue $arg0)>
Note, this feature only covers operands but not attributes.
Current use cases are based on the operand equality and explicitly add the constraint into the pattern. Attribute equality will be worked out on the different CL.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D89254
Add a framework for reading/writing extended register sets via
PT_GETXSTATE/PT_GETXSTATE_INFO/PT_SETXSTATE, and use it to support
YMM0..YMM15. The code is prepared to handle arbitrary XSAVE extensions,
including correct offset handling.
This fixes Shell/Register/*ymm* tests.
Differential Revision: https://reviews.llvm.org/D89193
clang --target arm-none-eabi --print-libgcc-file-name --rtlib=compiler-rt
used to print `/path/to/lib/clang/version/lib/libclang_rt.builtins-arm.a`
but should print `/path/to/lib/clang/version/lib/baremetal/libclang_rt.builtins-arm.a`.
Similarly, --target armv7m-none-eabi should print libclang_rt.builtins-armv7m.a
This matches the compiler-rt file name used at link time in the
baremetal driver.
Reviewed By: manojgupta
Differential Revision: https://reviews.llvm.org/D89327
This combine can look through (trunc (ctpop X)). When doing this
it tries to make sure the trunc doesn't lose any information
from the ctpop. It does this by checking that the truncated type
has more bits that Log2_32_Ceil of the ctpop type. The Ceil is
unnecessary and pessimizes non-power of 2 types.
For example, ctpop of i256 requires 9 bits to represent the max
value of 256. But ctpop of i255 only requires 8 bits to represent
the max result of 255. Log2_32_Ceil of 256 and 255 both return 8
while Log2_32 returns 8 for 256 and 7 for 255.
This reverts commit 25a97c3a43.
We have other constant folds that fold undef funnel shift amounts to 0 - so we need to be consistent.
If we end up with regressions where we lose a splat shift amount pattern we'll have to investigate other canonicalizations, but matchFunnelShift currently protects us from that.
This was broken by 16295d521e, when
instructions started being handled and not just constant
expressions. This was re-inserting an equivalent bitcast to the
original memcpy operand, which made a non-functional IR change on
every iteration.
This also fixes a secondary problem where it was inserting
addrspacecasts which may not have been legal (i.e. it changed the
source address space). Start visiting all pointer users and fail out
if we can't process them. Also start handling the relevant memory
intrinsic users. These cases can be dealt with by running
InferAddressSpaces separately.
This reverts the revert commit 710aceb645
and includes a fix for a memsan failure.
Original message:
This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
Polly incorrectly dropped the address space specified for a load instruction when it vectorized the code.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D88907
Also, some tests had multiple death tests in them, so split them into
separate tests instead. The second death test would obviously never
get run, because the first one would kill the program before.
Summary:
This patch does the following:
1. Make InitTargetOptionsFromCodeGenFlags() accepts Triple as a
parameter, because some options' default value is triple dependant.
2. DataSections is turned on by default on AIX for llc.
3. Test cases change accordingly because of the default behaviour change.
4. Clang Driver passes in -fdata-sections by default on AIX.
Reviewed By: MaskRay, DiggerLin
Differential Revision: https://reviews.llvm.org/D88737