Get the predefined macro for the architecture correct.
cortex-m4: __ARM_ARCH_7EM__
cortex-m3: __ARM_ARCH_7M__
cortex-m0: __ARM_ARCH_6M__
rdar://17420090
llvm-svn: 211792
This commit implements the -fuse-ld= option, so that the user
can specify -fuse-ld=bfd to use ld.bfd.
This commit re-applies r194328 with some test case changes.
It seems that r194328 was breaking macosx or mingw build
because clang can't find ld.bfd or ld.gold in the given sysroot.
We should use -B to specify the executable search path instead.
Patch originally by David Chisnall.
llvm-svn: 211785
Previously dllimport variables inside of template arguments relied on
not using the C++11 codepath when -fms-compatibility was set.
While this allowed us to achieve compatibility with MSVC, it did so at
the expense of MingW.
Instead, try to use the DeclRefExpr we dig out of the template argument.
If it has the dllimport attribute, accept it and skip the C++11
null-pointer check.
llvm-svn: 211766
Improve the warning when building with -fprofile-instr-use and a file
appears not to have been profiled at all. This keys on whether a
function is defined in the main file or not to avoid false negatives
when one includes a header with functions that have been profiled.
llvm-svn: 211760
Summary:
The BSDs and Darwin all forward the whole 'u' group, but gcc only
forwards -u so far as I can tell. I only forward -u, since that's a
minimal change, and many people object to magically recognizing and
forwarding linker arguments.
Reviewers: chandlerc, joerg
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4304
llvm-svn: 211756
This is a follow-up to David's r211677. For the following code,
we would end up referring to 'foo' in the initializer for 'arr',
and then fail to link, because 'foo' is dllimport and needs to be
accessed through the __imp_?foo.
__declspec(dllimport) extern const char foo[];
const char* f() {
static const char* const arr[] = { foo };
return arr[0];
}
Differential Revision: http://reviews.llvm.org/D4299
llvm-svn: 211736
For now, this is only used by its unit tests. It is similar to the API
in llvm::sys::fs::recursive_directory_iterator, but without some of the
more complex features like requesting that the iterator not recurse into
the next directory, for example.
llvm-svn: 211732
Consider the following code:
template <typename T> class Base {};
class __declspec(dllexport) class Derived : public Base<int> {}
When the base of an exported or imported class is a class template
specialization, MSVC will propagate the dll attribute to the base.
In the example code, Base<int> becomes a dllexported class.
This commit makes Clang do the proopagation when the base hasn't been
instantiated yet, and warns about it being unsupported otherwise.
This is different from MSVC, which allows changing a specialization
back and forth between dllimport and dllexport and seems to let the
last one win. Changing the dll attribute after instantiation would be
hard for us, and doesn't seem to come up in practice, so I think this
is a reasonable limitation to have.
MinGW doesn't do this kind of propagation.
Differential Revision: http://reviews.llvm.org/D4264
llvm-svn: 211725
With && at the top level of an expression, the last thing done when
emitting the expression was an unconditional jump to the cleanup block.
To reduce the amount of stepping, the DebugLoc is omitted from the
unconditional jump. This is done by clearing the IRBuilder's
"CurrentDebugLocation"*. If this is not set to some non-empty value
before the cleanup block is emitted, the cleanups don't get a location
either. If a call without a location is emitted in a function with debug
info, and that call is then inlined - bad things happen. (without a
location for the call site, the inliner would just leave the inlined
DebugLocs as they were - pointing to roots in the original function, not
inlined into the current function)
Follow up commit to LLVM will ensure that breaking the invariants of the
DebugLoc chains by having chains that don't lead to the current function
will fail assertions, so we shouldn't accidentally slip any of these
cases in anymore. Those assertions may reveal further cases that need to
be fixed in clang, though I've tried to test heavily to avoid that.
* See r128471, r128513 for the code that clears the
CurrentDebugLocation. Simply removing this code or moving the code
into IRBuilder to apply to all unconditional branches would regress
desired behavior, unfortunately.
llvm-svn: 211722
Types defined in function prototype are diagnosed earlier in C++ compilation.
They are put into declaration context where the prototype is introduced. Later on,
when FunctionDecl object is created, these types are moved into the function context.
This patch fixes PR19018 and PR18963.
Differential Revision: http://reviews.llvm.org/D4145
llvm-svn: 211718
Conditionally include x86intrin.h if we are building for x86 or x86_64.
Conditionalise definition of inline assembly routines which use x86 or x86_64
inline assembly. This is needed as clang can target Windows on ARM where these
definitions may be included into user code.
llvm-svn: 211716
[Clang part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211712
The < 8 instead of <= 8 meant that a bunch of vreinterprets were not available on v8 AArch32. Simplify the guard to just !defined(aarch64) while we're at it, and enable some v8 AArch32 testing.
llvm-svn: 211686
The C++ language requires that the address of a function be the same
across all translation units. To make __declspec(dllimport) useful,
this means that a dllimported function must also obey this rule. MSVC
implements this by dynamically querying the import address table located
in the linked executable. This means that the address of such a
function in C++ is not constant (which violates other rules).
However, the C language has no notion of ODR nor does it permit dynamic
initialization whatsoever. This requires implementations to _not_
dynamically query the import address table and instead utilize a wrapper
function that will be synthesized by the linker which will eventually
query the import address table. The effect this has is, to say the
least, perplexing.
Consider the following C program:
__declspec(dllimport) void f(void);
typedef void (*fp)(void);
static const fp var = &f;
const fp fun() { return &f; }
int main() { return fun() == var; }
MSVC will statically initialize "var" with the address of the wrapper
function and "fun" returns the address of the actual imported function.
This means that "main" will return false!
Note that LLVM's optimizers are strong enough to figure out that "main"
should return true. However, this result is dependent on having
optimizations enabled!
N.B. This change also permits the usage of dllimport declarators inside
of template arguments; they are sufficiently constant for such a
purpose. Add tests to make sure we don't regress here.
llvm-svn: 211677
VarDecl provides a method getSourceRange(), which provides a more
robust way of getting the SourceRange since the TypeSourceInfo can
be null in certain cases.
Reviewed by: majnemer
Differential Revision: http://reviews.llvm.org/D4281
llvm-svn: 211667
Add predefined stdint macros that match the given patterns:
U?INT{_,_FAST,_LEAST}{8,16,32,64}_{MAX,TYPE}
U?INT{PTR,MAX}_{MAX,TYPE}
http://reviews.llvm.org/D4141
Author: binji
llvm-svn: 211657
Rather than having kw___if_exists be a special case of
ParseCompoundStatementBody, we can look for kw___if_exists in the big
switch over for valid statement tokens in ParseStatementOrDeclaration.
Nested __if_exists blocks are used in the DECLARE_REGISTRY_RESOURCEID
macro from atlcom.h.
llvm-svn: 211654
MSVC does not create a new scope for the body of an __if_exists compound
statement. Clang already gets this right today, but it was untested.
llvm-svn: 211650
When a user types:
int [4] foo;
assume that the user means:
int foo[4];
Update the information for 'foo' to prevent additional errors, and provide
a fix-it hint to move the brackets to the correct location.
Additionally, suggest parens for types that require it, such as:
int [4] *foo;
to:
int (*foo)[4];
llvm-svn: 211641
1) missing iterator bits needed by libstdc++4.7
Using find_if was convenient, but since operator++ wasn't a good
interface anyway, I just replaced with a range-based for loop and
removed operator++ from the directory_iterator class.
2) stop relying on order of iterating real files
llvm-svn: 211633