parameter node and use this to correctly mangle parameter
references in function template signatures.
A follow-up patch will improve the storage usage of these
fields; here I've just done the lazy thing.
llvm-svn: 130669
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
instantiation), be sure to add the transformed declaration into the
current DeclContext. Also, remove the -Wuninitialized hack that works
around this bug. Fixes <rdar://problem/9200676>.
llvm-svn: 129544
This patch authored by Eric Niebler.
Many methods on the Sema class (e.g. ConvertPropertyForRValue) take Expr
pointers as in/out parameters (Expr *&). This is especially true for the
routines that apply implicit conversions to nodes in-place. This design is
workable only as long as those conversions cannot fail. If they are allowed
to fail, they need a way to report their failures. The typical way of doing
this in clang is to use an ExprResult, which has an extra bit to signal a
valid/invalid state. Returning ExprResult is de riguour elsewhere in the Sema
interface. We suggest changing the Expr *& parameters in the Sema interface
to ExprResult &. This increases interface consistency and maintainability.
This interface change is important for work supporting MS-style C++
properties. For reasons explained here
<http://lists.cs.uiuc.edu/pipermail/cfe-dev/2011-February/013180.html>,
seemingly trivial operations like rvalue/lvalue conversions that formerly
could not fail now can. (The reason is that given the semantics of the
feature, getter/setter method lookup cannot happen until the point of use, at
which point it may be found that the method does not exist, or it may have the
wrong type, or overload resolution may fail, or it may be inaccessible.)
llvm-svn: 129143
location into a TemplateSpecializationTypeLoc. These were found using
a hand-written program to inspect every source location in
TemplateSpecializationTypeLocs and Valgrind. I don't know of any way to
test them in Clang's existing test suite sadly.
Example code that triggers the ElaboratedType case:
template <typename T> struct X1 {
template <typename U> struct X1_1 {
int x;
};
};
template <typename T, typename U> struct X2 {
typename X1<T>::template X1_1<U> B;
};
X2<char, int> x2;
The other fix was simply spotted by inspection. I audited all constructions of
[Dependent]TemplateSpecializationTypeLocs in TreeTransform.h, and the rest set
the TemplateNameLoc properly.
llvm-svn: 128702
to set the source-location information for the template arguments to
the *transformed* source-location information, not the original
source-location information. Fixes <rdar://problem/8986308> (a libc++
SFINAE issue) and the Boost.Polygon failure.
llvm-svn: 127150
transform the type that replaces the template type parameter. In the
vast majority of cases, there's nothing to do, because most template
type parameters are replaced with something non-dependent that doesn't
need further transformation. However, when we're dealing with the
default template arguments of template template parameters, we might
end up replacing a template parameter (of the template template
parameter) with a template parameter of the enclosing template.
This addresses part of PR9016, but not within function
templates. That's a separate issue.
llvm-svn: 127091
DependentTemplateSpecializationType during tree transformation, retain
the NestedNameSpecifierLoc as it was used to translate the template
name, rather than reconstructing it from the template name.
Fixes PR9401.
llvm-svn: 127015
parameter, save the instantiated default template arguments along with
the explicitly-specified template argument list. That way, we prefer
the default template template arguments corresponding to the template
template parameter rather than those of its template template argument.
This addresses the likely direction of C++ core issue 150, and fixes
PR9353/<rdar://problem/9069136>, bringing us closer to the behavior of
EDG and GCC.
llvm-svn: 126920
TreeTransform::TransformDependentTemplateSpecializationType() with
poor source-location information handling. All of the
CXXScopeSpec::MakeTrivial() and
NestedNameSpecifierLocBuilder::MakeTrivial() callers actually make
sense now.
llvm-svn: 126856
source-location-preserving
TreeTransform::TranformNestedNameSpecifierLoc(). No functionality
change: the victim had no callers (that themselves had callers) anyway.
llvm-svn: 126853
template arguments. I believe that this is the last place in the AST
where we were storing a source range for a nested-name-specifier
rather than a proper nested-name-specifier location structure. (Yay!)
There is still a lot of cleanup to do in the TreeTransform, which
doesn't take advantage of nested-name-specifiers with source-location
information everywhere it could.
llvm-svn: 126844
of an expansion, and we have a paramameter that is not a parameter
pack, don't suppress substitution of parameter packs within this
context.
llvm-svn: 126819
template specialization types. There are still a few rough edges to
clean up with some of the parser actions dropping
nested-name-specifiers too early.
llvm-svn: 126776
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
source-location information. We don't actually preserve this
information in any of the resulting TypeLocs (yet), so it doesn't
matter.
llvm-svn: 126693
UnresolvedLookupExpr and UnresolvedMemberExpr.
Also, improve the computation that checks whether the base of a member
expression (either unresolved or dependent-scoped) is implicit. The
previous check didn't cover all of the cases we use in our
representation, which threw off source-location information for these
expressions (which, in turn, caused some breakage in libclang's token
annotation).
llvm-svn: 126681
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
dependent template names. There is still a lot of redundant code in
TreeTransform to cope with TemplateSpecializationTypes, which I'll
remove in stages.
llvm-svn: 126656
nested-name-specifier, e.g.,
T::template apply<U>::
represent the dependent template name specialization as a
DependentTemplateSpecializationType, rather than a
TemplateSpecializationType with a dependent TemplateName.
llvm-svn: 126593
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
with another component in the nested-name-specifiers, updating its
representation (a NestedNameSpecifier) and source-location information
(currently a SourceRange) simultaneously. This is groundwork for
adding source-location information to nested-name-specifiers.
llvm-svn: 126346
making them be template instantiated in a more normal way and
make them handle attributes like other decls.
This fixes the used/unused label handling stuff, making it use
the same infrastructure as other decls.
llvm-svn: 125771
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
- Add ref-qualifiers to the type system; they are part of the
canonical type. Print & profile ref-qualifiers
- Translate the ref-qualifier from the Declarator chunk for
functions to the function type.
- Diagnose mis-uses of ref-qualifiers w.r.t. static member
functions, free functions, constructors, destructors, etc.
- Add serialization and deserialization of ref-qualifiers.
llvm-svn: 124281
generate meaningful [*] template argument location information.
[*] Well, as meaningful as possible, given that this entire code path
is a hack for when we've lost type-source information.
llvm-svn: 124211
during template instantiation. This code needs to eventually die, but
this little tweak fixes PR8629, where bad location information slipped
through to the location of a class template instantiation.
llvm-svn: 124199
together. In particular:
- Handle the use of captured parameter pack names within blocks
(BlockDeclRefExpr understands parameter packs now)
- Handle the declaration and expansion of parameter packs within a block's
parameter list, e.g., ^(Args ...args) { ... })
- Handle instantiation of blocks where the return type was not
explicitly specified. (unrelated, but necessary for my tests).
Together, these fixes should make blocks and variadic templates work
reasonably well together. Note that BlockDeclRefExpr is still broken
w.r.t. its computation of type and value dependence, which will still
cause problems for blocks in templates.
llvm-svn: 123849
outermost array types and not on the element type. Move the CanonicalType
member from Type to ExtQualsTypeCommonBase; the canonical type on an ExtQuals
node includes the qualifiers on the ExtQuals. Assorted optimizations enabled
by this change.
getQualifiers(), hasQualifiers(), etc. should all now implicitly look through
array types.
llvm-svn: 123817
template template parameter pack that cannot be fully expanded because
its enclosing pack expansion could not be expanded. This form of
TemplateName plays the same role as SubstTemplateTypeParmPackType and
SubstNonTypeTemplateParmPackExpr do for template type parameter packs
and non-type template parameter packs, respectively.
We should now handle these multi-level pack expansion substitutions
anywhere. The largest remaining gap in our variadic-templates support
is that we cannot cope with non-type template parameter packs whose
type is a pack expansion.
llvm-svn: 123521
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
expansion, when it is known due to the substitution of an out
parameter pack. This allows us to properly handle substitution into
pack expansions that involve multiple parameter packs at different
template parameter levels, even when this substitution happens one
level at a time (as with partial specializations of member class
templates and the signatures of member function templates).
Note that the diagnostic we provide when there is an arity mismatch
between an outer parameter pack and an inner parameter pack in this
case isn't as clear as the normal diagnostic for an arity
mismatch. However, this doesn't matter because these cases are very,
very rare and (even then) only typically occur in a SFINAE context.
The other kinds of pack expansions (expression, template, etc.) still
need to support optional tracking of the number of expansions, and we
need the moral equivalent of SubstTemplateTypeParmPackType for
substituted argument packs of template template and non-type template
parameters.
llvm-svn: 123448
involve template parameter packs at multiple template levels that
occur within the signatures members of class templates (and partial
specializations thereof). This is a work-in-progress that is deficient
in several ways, notably:
- It only works for template type parameter packs, but we need to
also support non-type template parameter packs and template template
parameter packs.
- It doesn't keep track of the lengths of the substituted argument
packs in the expansion, so it can't properly diagnose length
mismatches.
However, this is a concrete step in the right direction.
llvm-svn: 123425
another pack expansion type. This can happen when rebuilding types in
the current instantiation.
Fixes <rdar://problem/8848837> (Clang crashing on libc++ <functional>).
llvm-svn: 123316
and function templates that contain variadic templates. This involves
three small-ish changes:
(1) When transforming a pack expansion, if the transformed argument
still contains unexpanded parameter packs, build a pack
expansion. This can happen during the substitution that occurs into
class template partial specialiation template arguments during
partial ordering.
(2) When performing template argument deduction where the argument
is a pack expansion, match against the pattern of that pack
expansion.
(3) When performing template argument deduction against a non-pack
parameter, or a non-expansion template argument, deduction fails if
the argument itself is a pack expansion (C++0x
[temp.deduct.type]p22).
llvm-svn: 123279
pack expansions in template argument lists and function parameter
lists. The implementation of this paragraph should be complete
*except* for cases where we're substituting into one of the unexpanded
packs in a pack expansion; that's a general issue I haven't solved yet.
llvm-svn: 123188
allows an argument pack determines via explicit specification of
function template arguments to be extended by further, deduced
arguments. For example:
template<class ... Types> void f(Types ... values);
void g() {
f<int*, float*>(0, 0, 0); // Types is deduced to the sequence int*, float*, int
}
There are a number of FIXMEs in here that indicate places where we
need to implement + test retained expansions, plus a number of other
places in deduction where we need to correctly cope with the
explicitly-specified arguments when deducing an argument
pack. Furthermore, it appears that the RecursiveASTVisitor needs to be
auditied; it's missing some traversals (especially w.r.t. template
arguments) that cause it not to find unexpanded parameter packs when
it should.
The good news, however, is that the tr1::tuple implementation now
works fully, and the tr1::bind example (both from N2080) is actually
working now.
llvm-svn: 123163
parameters into parameter types, so that substitution of
explicitly-specified function template arguments uses the same
path. This enables the use of explicitly-specified function template
arguments with variadic templates.
llvm-svn: 122986
The initial TreeTransform is a cop-out, but it's more-or-less equivalent
to what we were doing before, or rather what we're doing now and might
eventually stop doing in favor of using this type.
I am simultaneously intrigued by the possibilities of rebuilding a
dependent Attri
llvm-svn: 122942
TypeSourceInfo when transforming a function parameter. The callees of
this routine already assume that TypeSourceInfo will be present, and
we want to always be sure that it exists.
llvm-svn: 122927
1) Declaration of function parameter packs
2) Instantiation of function parameter packs within function types.
3) Template argument deduction of function parameter packs when
matching two function types.
We're missing all of the important template-instantiation logic for
function template definitions, along with template argument deduction
from the argument list of a function call, so don't even think of
trying to use these for real yet.
llvm-svn: 122926
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896
the declaration-specifiers and on the declarator itself are moved
to the appropriate declarator chunk. This permits a greatly
simplified model for how to apply these attributes, as well as
allowing a much more efficient query for the GC attribute.
Now all qualifier queries follow the same basic strategy of
"local qualifiers, local qualifiers on the canonical type,
then look through arrays". This can be easily optimized by
changing the canonical qualified-array-type representation.
Do not process type attributes as decl attributes on declarations
with declarators.
When computing the type of a block, synthesize a prototype
function declarator chunk if the decl-spec type was not a
function. This simplifies the logic for building block signatures.
Change the logic which inserts an objc_read_weak on a block
literal to only fire if the block has a __weak __block variable,
rather than if the return type of the block is __weak qualified,
which is not actually a sensible thing to ask.
llvm-svn: 122871
(transforming each in turn) into calls into one central routine
(TransformExprs) that transforms a list of expressions. This
refactoring is preparatory work for pack expansions whose in an
expression-list.
No functionality change.
llvm-svn: 122761
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
lists, so that all such transformations go through a single,
iterator-based transformation function. This is the only place where
we need to implement the logic for transforming pack expansions whose
pattern is a template argument.
Unfortunately, the new cases this refactoring brings into the fold
can't be meaningfully tested yet. We need template argument deduction
to work well enough for variadic function templates first.
llvm-svn: 122289
whose patterns are template arguments. We can now instantiate, e.g.,
typedef tuple<pair<OuterTypes, InnerTypes>...> type;
where OuterTypes and InnerTypes are template type parameter packs.
There is a horrible inefficiency in
TemplateArgumentLoc::getPackExpansionPattern(), where we need to
create copies of TypeLoc data because our interfaces traffic in
TypeSourceInfo pointers where they should traffic in TypeLocs
instead. I've isolated in efficiency in this one routine; once we
refactor our interfaces to traffic in TypeLocs, we can eliminate it.
llvm-svn: 122278
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
and use a better and more general approach, where NullStmt has a flag to indicate whether it was preceded by an empty macro.
Thanks to Abramo Bagnara for the hint!
llvm-svn: 119887
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
parameters to the Transform*Type functions and instead call out
the specific cases where an object type and the unqualified lookup
results are important. Fixes an assert and failed compile on
a testcase from PR7248.
llvm-svn: 118887
NEON vector types need to be mangled in a special way to comply with ARM's ABI,
similar to some of the AltiVec-specific vector types. This patch is mostly
just renaming a bunch of "AltiVecSpecific" things, since they will no longer
be specific to AltiVec. Besides that, it just adds the new "NeonVector" enum.
llvm-svn: 118724
abstractions (e.g., TemplateArgumentListBuilder) that were designed to
support variadic templates. Only a few remnants of variadic templates
remain, in the parser (parsing template type parameter packs), AST
(template type parameter pack bits and TemplateArgument::Pack), and
Sema; these are expected to be used in a future implementation of
variadic templates.
But don't get too excited about that happening now.
llvm-svn: 118385
This adds them where missing, and traces them through PCH. We fix at least one
bug in the extents found by the Index library, and make a lot of refactoring
tools which care about the exact formulation of a constructor call easier to
write. Also some minor cleanups to more consistently follow the friend pattern
instead of the setter pattern when rebuilding a serialized AST.
Patch originally by Samuel Benzaquen.
llvm-svn: 117254
arguments in either the placement or constructor arguments. This is
important if the default arguments refer to a declaration or create a
temporary.
llvm-svn: 115700
"used", at the time that the default argument itself is used, also
mark destructors that will be called by this expression. This fixes a
regression that I introduced in r113700, which broke WebKit, and fixes
<rdar://problem/8427926>.
llvm-svn: 113883
with comma-separated lists. We never actually used the comma
locations, nor did we store them in the AST, but we did manage to
waste time during template instantiation to produce fake locations.
llvm-svn: 113495
TreeTransform, since we were getting an empty source range where we
shouldn't. Sadly, the test case is Boost.Proto, and isn't worth
reducing.
llvm-svn: 113446
instantiating the parameters. In a perfect world, this wouldn't
matter, and compilers are free to instantiate in any order they
want. However, every other compiler seems to instantiate the return
type first, and some code (in this case, Boost.Polygon) depends on
this and SFINAE to avoid instantiating something that shouldn't be
instantiated.
We could fight this battle, and insist that Clang is allowed to do
what it does, but it's not beneficial: it's more predictable to
instantiate this way, in source order. When we implement
late-specified return types, we'll need to instantiate the return type
last when it was late-specified, hence the FIXME.
We now compile Boost.Polygon properly.
llvm-svn: 112561
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
For large floats/integers, APFloat/APInt will allocate memory from the heap to represent these numbers.
Unfortunately, when we use a BumpPtrAllocator to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
the APFloat/APInt values will never get freed.
I introduce the class 'APNumericStorage' which uses ASTContext's allocator for memory allocation and is used internally by FloatingLiteral/IntegerLiteral.
Fixes rdar://7637185
llvm-svn: 112361
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244