Commit Graph

2404 Commits

Author SHA1 Message Date
Uday Bondhugula a63f6e0bf9 Replace spurious SmallVector constructions with ValueRange
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#305

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/305 from bondhugula:value_range 21d1fae73f549e3c8e72b60876eff1b864cea39c
PiperOrigin-RevId: 284541027
2019-12-09 06:26:33 -08:00
Lei Zhang 9a4c2df480 NFC: Expose constFoldBinaryOp via a header
This allows other dialects to reuse the logic to support constant
folding binary operations and reduces code duplication.

PiperOrigin-RevId: 284428721
2019-12-08 06:25:54 -08:00
River Riddle d6ee6a0310 Update the builder API to take ValueRange instead of ArrayRef<Value *>
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.

PiperOrigin-RevId: 284360710
2019-12-07 10:35:41 -08:00
River Riddle 9d1a0c72b4 Add a new ValueRange class.
This class represents a generic abstraction over the different ways to represent a range of Values: ArrayRef<Value *>, operand_range, result_range. This class will allow for removing the many instances of explicit SmallVector<Value *, N> construction. It has the same memory cost as ArrayRef, and only suffers cost from indexing(if+elsing the different underlying representations).

This change only updates a few of the existing usages, with more to be changed in followups; e.g. 'build' API.

PiperOrigin-RevId: 284307996
2019-12-06 20:07:23 -08:00
River Riddle 8904e91035 Add a flag to the IRPrinter instrumentation to only print after a pass if there is a change to the IR.
This adds an additional filtering mode for printing after a pass that checks to see if the pass actually changed the IR before printing it. This "change" detection is implemented using a SHA1 hash of the current operation and its children.

PiperOrigin-RevId: 284291089
2019-12-06 17:05:05 -08:00
Uday Bondhugula ca23bd78d4 NFC - update doc, comments, vim syntax file
- for the symbol rules, the code was updated but the doc wasn't.

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#284

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/284 from bondhugula:doc 9aad8b8a715559f7ce61265f3da3f8a3c11b45ea
PiperOrigin-RevId: 284283712
2019-12-06 16:17:06 -08:00
Mahesh Ravishankar 6500b7e0c0 NFC: Separate implementation and definition in ConvertStandardToSPIRV.cpp
PiperOrigin-RevId: 284274326
2019-12-06 15:26:17 -08:00
Alex Zinenko e96150eb46 Replace custom getBody method with an ODS-generated in gpu::LaunchOp
PiperOrigin-RevId: 284262981
2019-12-06 14:29:25 -08:00
Mahesh Ravishankar 883f555726 During serialization do a walk of ops in module to find spv.module.
During lowering, spv.module might be within other modules (for example
gpu kernel module). Walk the module op to find spirv module to
serialize.

PiperOrigin-RevId: 284262550
2019-12-06 14:27:03 -08:00
Alex Zinenko 3230267d0d Move GPU::LaunchOp to ODS. NFC.
Move the definition of the GPU launch opreation from hand-rolled C++ code to
ODS framework. This only does the moves, a follow-up is necessary to clean up
users of custom functions that could be auto-generated by ODS.

PiperOrigin-RevId: 284261856
2019-12-06 14:23:37 -08:00
Aart Bik d37f27251f [VecOps] Rename vector.[insert|extract]element to just vector.[insert|extract]
Since these operations lower to [insert|extract][element|value] at LLVM
dialect level, neither element nor value would correctly reflect the meaning.

PiperOrigin-RevId: 284240727
2019-12-06 12:39:25 -08:00
Alex Zinenko be3ed14658 LLVM::GlobalOp: take address space as builder argument
Accept the address space of the global as a builder argument when constructing
an LLVM::GlobalOp instance. This decreases the reliance of LLVM::GlobalOp users
on the internal name of the attribute used for this purpose. Update several
uses of the address space in GPU to NVVM conversion.

PiperOrigin-RevId: 284233254
2019-12-06 12:01:46 -08:00
Alex Zinenko ccc767d63b Move GPU::FuncOp definition to ODS - NFC
Move the definition of the GPU function opreation from hand-rolled C++ code to
ODS framework. This only does the moves, a follow-up is necessary to clean up
users of custom functions that could be auto-generated by ODS.

PiperOrigin-RevId: 284233245
2019-12-06 12:00:32 -08:00
Aart Bik b36aaeafb1 [VectorOps] Add lowering of vector.broadcast to LLVM IR
For example, a scalar broadcast

    %0 = vector.broadcast %x : f32 to vector<2xf32>
    return %0 : vector<2xf32>

which expands scalar x into vector [x,x] by lowering
to the following LLVM IR dialect to implement the
duplication over the leading dimension.

    %0 = llvm.mlir.undef : !llvm<"<2 x float>">
    %1 = llvm.mlir.constant(0 : index) : !llvm.i64
    %2 = llvm.insertelement %x, %0[%1 : !llvm.i64] : !llvm<"<2 x float>">
    %3 = llvm.shufflevector %2, %0 [0 : i32, 0 : i32] : !llvm<"<2 x float>">, !llvm<"<2 x float>">
    return %3 : vector<2xf32>

In the trailing dimensions, the operand is simply
"passed through", unless a more elaborate "stretch"
is required.

For example

    %0 = vector.broadcast %arg0 : vector<1xf32> to vector<4xf32>
    return %0 : vector<4xf32>

becomes

    %0 = llvm.mlir.undef : !llvm<"<4 x float>">
    %1 = llvm.mlir.constant(0 : index) : !llvm.i64
    %2 = llvm.extractelement %arg0[%1 : !llvm.i64] : !llvm<"<1 x float>">
    %3 = llvm.mlir.constant(0 : index) : !llvm.i64
    %4 = llvm.insertelement %2, %0[%3 : !llvm.i64] : !llvm<"<4 x float>">
    %5 = llvm.shufflevector %4, %0 [0 : i32, 0 : i32, 0 : i32, 0 : i32] : !llvm<"<4 x float>">, !llvm<"<4 x float>">
    llvm.return %5 : !llvm<"<4 x float>">

PiperOrigin-RevId: 284219926
2019-12-06 11:02:29 -08:00
Alex Zinenko e216a72ab8 Add conversions of GPU func with memory attributions to LLVM/NVVM
GPU functions use memory attributions, a combination of Op attributes and
region arguments, to specify function-wide buffers placed in workgroup or
private memory spaces. Introduce a lowering pattern for GPU functions to be
converted to LLVM functions taking into account memory attributions. Workgroup
attributions get transformed into module-level globals with unique names
derived from function names. Private attributions get converted into
llvm.allocas inside the function body. In both cases, we inject at the
beginning of the function the IR that obtains the raw pointer to the data and
populates a MemRef descriptor based on the MemRef type of buffer, making
attributions compose with the rest of the MemRef lowering and transparent for
use with std.load and std.store. While using raw pointers instead of
descriptors might have been more efficient, it is better implemented as a
canonicalization or a separate transformation so that non-attribution memrefs
could also benefit from it.

PiperOrigin-RevId: 284208396
2019-12-06 10:08:43 -08:00
Alexandre E. Eichenberger 3c69ca1e69 fix examples in comments
Closes tensorflow/mlir#301

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/301 from AlexandreEichenberger:vect-doc-update 7e5418a9101a4bdad2357882fe660b02bba8bd01
PiperOrigin-RevId: 284202462
2019-12-06 09:40:50 -08:00
Andy Davis 41f8e105fa Unroll vector masks along with their associated vector arguments.
Updates vector ContractionOp to use proper vector masks (produced by CreateMaskOp/ConstantMaskOp).
Leverages the following canonicalizations in unrolling unit test: CreateMaskOp -> ConstantMaskOp, StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp
Removes IndexTupleOp (no longer needed now that we have vector mask ops).
Updates all unit tests.

PiperOrigin-RevId: 284182168
2019-12-06 07:37:28 -08:00
Denis Khalikov 9ca53130f3 [spirv] Reorder `erase` and `emplace` to avoid "invalid iterator access".
The iterator should be erased before adding a new entry
into blockMergeInfo to avoid iterator invalidation.

Closes tensorflow/mlir#299

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/299 from denis0x0D:sandbox/reoder_erase 983be565809aa0aadfc7e92962e4d4b282f63c66
PiperOrigin-RevId: 284173235
2019-12-06 06:26:56 -08:00
Uday Bondhugula 3ade6a7d15 DimOp folding for alloc/view dynamic dimensions
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#253

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/253 from bondhugula:dimop a4b464f24ae63fd259114558d87e11b8ee4dae86
PiperOrigin-RevId: 284169689
2019-12-06 06:00:54 -08:00
Kazuaki Ishizaki 84a6182ddd minor spelling tweaks
Closes tensorflow/mlir#290

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/290 from kiszk:spelling_tweaks_201912 9d9afd16a723dd65754a04698b3976f150a6054a
PiperOrigin-RevId: 284169681
2019-12-06 05:59:30 -08:00
Alex Zinenko 58adf99ed1 LLVM::AddressOfOp: properly take into account the address space
The AddressOf operation in the LLVM dialect return a pointer to a global
variable. The latter may be in a non-default address space as indicated by the
"addr_space" attribute. Check that the address space of the pointer returned by
AddressOfOp matches that of the referenced GlobalOp. Update the AddressOfOp
builder to respect this constraint.

PiperOrigin-RevId: 284138860
2019-12-06 01:09:13 -08:00
Jose Ignacio Gomez f60bbb6c3b [Linalg] Add permutation information to tiling
This patch closes issue tensorflow/mlir#271.
It adds an optional permutation map to declarative tiling transformations.
The map is expressed as a list of integers.

Closes tensorflow/mlir#288

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/288 from tetuante:issue271 2df2938d6a1f01b3bc404ded08dea2dd1e10b588
PiperOrigin-RevId: 284064151
2019-12-05 15:14:59 -08:00
River Riddle da53000fb4 Refactor the IRPrinting instrumentation to take a derivable config.
This allows for more interesting behavior from users, e.g. enabling the ability to dump the IR to a separate file for each pass invocation.

PiperOrigin-RevId: 284059447
2019-12-05 14:53:01 -08:00
nmostafa daff60cd68 Add UnrankedMemRef Type
Closes tensorflow/mlir#261

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/261 from nmostafa:nmostafa/unranked 96b6e918f6ed64496f7573b2db33c0b02658ca45
PiperOrigin-RevId: 284037040
2019-12-05 13:13:20 -08:00
Denis Khalikov e67acfa468 [spirv] Add CompositeInsertOp operation
A CompositeInsertOp operation make a copy of a composite object,
while modifying one part of it.

Closes tensorflow/mlir#292

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/292 from denis0x0D:sandbox/composite_insert 2200962b9057bda53cd2f2866b461e2797196380
PiperOrigin-RevId: 284036551
2019-12-05 13:10:44 -08:00
River Riddle 33a64540ad Add support for instance specific pass statistics.
Statistics are a way to keep track of what the compiler is doing and how effective various optimizations are. It is useful to see what optimizations are contributing to making a particular program run faster. Pass-instance specific statistics take this even further as you can see the effect of placing a particular pass at specific places within the pass pipeline, e.g. they could help answer questions like "what happens if I run CSE again here".

Statistics can be added to a pass by simply adding members of type 'Pass::Statistics'. This class takes as a constructor arguments: the parent pass pointer, a name, and a description. Statistics can be dumped by the pass manager in a similar manner to how pass timing information is dumped, i.e. via PassManager::enableStatistics programmatically; or -pass-statistics and -pass-statistics-display via the command line pass manager options.

Below is an example:

struct MyPass : public OperationPass<MyPass> {
  Statistic testStat{this, "testStat", "A test statistic"};

  void runOnOperation() {
    ...
    ++testStat;
    ...
  }
};

$ mlir-opt -pass-pipeline='func(my-pass,my-pass)' foo.mlir -pass-statistics

Pipeline Display:
===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
'func' Pipeline
  MyPass
    (S) 15 testStat - A test statistic
  MyPass
    (S)  6 testStat - A test statistic

List Display:
===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
MyPass
  (S) 21 testStat - A test statistic

PiperOrigin-RevId: 284022014
2019-12-05 11:53:28 -08:00
Mahesh Ravishankar 4d61a79db4 Allow specification of the workgroup size for GPUToSPIRV lowering.
SPIR-V/Vulkan spec requires the workgroups size to be specified with
the spv.ExecutionMode operation. This was hard-wired to be set to a
particular value. It is now changed to be configurable by clients of
the pass or of the patterns that implement the lowering from GPU to
SPIRV.

PiperOrigin-RevId: 284017482
2019-12-05 11:31:57 -08:00
Lei Zhang 037044b0ae Add spv.AtomicCompareExchangeWeak
PiperOrigin-RevId: 283997917
2019-12-05 10:06:24 -08:00
River Riddle 780f0c043a Add a flag to dump the current stack trace when emitting a diagnostic.
It is often desirable to know where within the program that a diagnostic was emitted, without reverting to assert/unreachable which crash the program. This change adds a flag `mlir-print-stacktrace-on-diagnostic` that attaches the current stack trace as a note to every diagnostic that gets emitted.

PiperOrigin-RevId: 283996373
2019-12-05 10:00:25 -08:00
Lei Zhang c0a9de29ad [spirv] Fix nested loop (de)serialization
For serialization, when we have nested ops, the inner loop will create multiple
SPIR-V blocks. If the outer loop has block arguments (which corresponds to
OpPhi instructions), we defer the handling of OpPhi's parent block handling
until we serialized all blocks and then fix it up with the result <id>. These two
cases happening together was generating invalid SPIR-V blob because we
previously assume the parent block to be the block containing the terminator.
That is not true anymore when the block contains structured control flow ops.
If that happens, it should be fixed to use the structured control flow op's
merge block.

For deserialization, we record a map from header blocks to their corresponding
merge and continue blocks during the initial deserialization and then use the
info to construct spv.selection/spv.loop. The existing implementation will also
fall apart when we have nested loops. If so, we clone all blocks for the outer
loop, including the ones for the inner loop, to the spv.loop's region. So the map
for header blocks' merge info need to be updated; otherwise we are operating
on already deleted blocks.

PiperOrigin-RevId: 283949230
2019-12-05 04:39:37 -08:00
Mehdi Amini b14ee5a9a1 Fix MLIR Build after LLVM upstream JIT changes (getMainJITDylib removed)
The getMainJITDylib() method was removed in 4fc68b9b7f, replace it by creating a JITDylib on the fly.

PiperOrigin-RevId: 283948595
2019-12-05 04:32:46 -08:00
Tres Popp b8cd0c1486 Move ModuleManager functionality into mlir::SymbolTable.
Note for broken code, the following transformations occurred:
ModuleManager::insert(Block::iterator, Operation*) - > SymbolTable::insert(Operation*, Block::iterator)
ModuleManager::lookupSymbol -> SymbolTable::lookup
ModuleManager::getModule() -> SymbolTable::getOp()
ModuleManager::getContext() -> SymbolTable::getOp()->getContext()
ModuleManager::* -> SymbolTable::*
PiperOrigin-RevId: 283944635
2019-12-05 03:56:46 -08:00
Lei Zhang b60799b71b Add MLIRIR as a dependency to LLVM and related dialects
Fixes tensorflow/mlir#289

PiperOrigin-RevId: 283914472
2019-12-04 23:45:35 -08:00
River Riddle d9da8b647a Optimize operation ordering to support non-congruent indices.
This change adds support for non-congruent indices in the operation ordering within a basic block. This effect of this is that insertions are less likely to cause an invalidation of the ordering within a block. This has a big effect on modules that have very large basic blocks.

PiperOrigin-RevId: 283858136
2019-12-04 16:10:13 -08:00
River Riddle 2c930f8d9d Add emitOptional(Error|Warning|Remark) functions to simplify emission with an optional location.
In some situations a diagnostic may optionally be emitted by the presence of a location, e.g. attribute and type verification. These situations currently require extra 'if(loc) emitError(...); return failure()' wrappers that make verification clunky. These new overloads take an optional location and a list of arguments to the diagnostic, and return a LogicalResult. We take the arguments directly and return LogicalResult instead of returning InFlightDiagnostic because we cannot create a valid diagnostic with a null location. This creates an awkward situation where a user may try to treat the, potentially null, diagnostic as a valid one and encounter crashes when attaching notes/etc. Below is an example of how these methods simplify some existing usages:

Before:

  if (loc)
    emitError(*loc, "this is my diagnostic with argument: ") << 5;
  return failure();

After:

  return emitOptionalError(loc, "this is my diagnostic with argument: ", 5);

PiperOrigin-RevId: 283853599
2019-12-04 15:49:42 -08:00
Nicolas Vasilache b3f7cf80a7 Add a CL option to Standard to LLVM lowering to use alloca instead of malloc/free.
In the future, a more configurable malloc and free interface should be used and exposed via
extra parameters to the `createLowerToLLVMPass`. Until requirements are gathered, a simple CL flag allows generating code that runs successfully on hardware that cannot use the stdlib.

PiperOrigin-RevId: 283833424
2019-12-04 14:16:00 -08:00
Andy Davis d20d763241 Add canonicalization patterns for vector CreateMaskOp and StridedSliceOp to be used in the unroll vector op transformation.
Adds a ConstantMaskOp to the vector ops dialect.
Adds the following canonicalization patterns:
CreateMaskOp -> ConstantMaskOp
StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp

PiperOrigin-RevId: 283816752
2019-12-04 13:00:43 -08:00
River Riddle 6f895bec7d [CSE] NFC: Hash the attribute dictionary pointer instead of the list of attributes.
PiperOrigin-RevId: 283810829
2019-12-04 12:32:08 -08:00
Nicolas Vasilache edfaf925cf Drop MaterializeVectorTransfers in favor of simpler declarative unrolling
Now that we have unrolling as a declarative pattern, we can drop a full pass that has gone stale. In the future we may want to add specific unrolling patterns for VectorTransferReadOp.

PiperOrigin-RevId: 283806880
2019-12-04 12:11:42 -08:00
River Riddle 31b3e2248b NFC: Fix mismatches between LangRef.md and actual parser implementation.
PiperOrigin-RevId: 283805832
2019-12-04 12:06:24 -08:00
Sean Silva 26484bc0b6 Print out large elementsattr's such that they are parseable.
I found that when running crash reproducers, the elided elementsattr's
would prevent parsing the IR repro. I found myself manually going and
replacing the "..." with some valid IR.

With this change, we now print elided attrs as `opaque<"", "0xDEADBEEF">`
to clearly delineate them as being elided while still being parseable.

PiperOrigin-RevId: 283781806
2019-12-04 10:19:54 -08:00
Uday Bondhugula 0827fa562d NFC - fix name / comments - isAccessInvariant
- the name was misleading; this is really checking if a Value being used
  to index was loop IV invariant. Update comment.

- the method is only used locally; what can be exposed in the future is
  isAccessInvariant(LoadOrStoreOp op, Value *iv)

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#285

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/285 from bondhugula:quickfix fe5837abe987980c4ab469a9aa7de8e4f0007d9f
PiperOrigin-RevId: 283771923
2019-12-04 09:30:22 -08:00
Alex Zinenko 75175134d4 Loop coalescing: fix pointer chainsing in use-chain traversal
In the replaceAllUsesExcept utility function called from loop coalescing the
iteration over the use-chain is incorrect. The use list nodes (IROperands) have
next/prev links, and bluntly resetting the use would make the loop to continue
on uses of the value that was replaced instead of the original one. As a
result, it could miss the existing uses and update the wrong ones. Make sure we
increment the iterator before updating the use in the loop body.

Reported-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#291.

PiperOrigin-RevId: 283754195
2019-12-04 07:42:29 -08:00
Andy Davis 34e1f4aa51 Adds support for unrolling single-result vector operations with iterator type lists and indexing maps to a target vector size.
Adds unit tests for unrolling the vector ContractionOp with different iteration orders.

PiperOrigin-RevId: 283747503
2019-12-04 06:53:37 -08:00
Nicolas Vasilache 5c0c51a997 Refactor dependencies to expose Vector transformations as patterns - NFC
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.

This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.

PiperOrigin-RevId: 283660308
2019-12-03 17:52:10 -08:00
Lei Zhang 50b2b26e70 [spirv] Add spv.GroupNonUniformBallot
This CL also did the following cleanup:
- Moved the test for spv.SubgroupBallotKHR to its own file
- Wrapped generated canonicalization patterns in anonymous namespace
- Updated header comments in SPVOps.td

PiperOrigin-RevId: 283650091
2019-12-03 16:44:09 -08:00
Mahesh Ravishankar c5ba37b6ae Add a pass to legalize operations before lowering to SPIR-V.
Not all StandardOps can be lowered to SPIR-V. For example, subview op
implementation requires use of pointer bitcasts which is not valid
according to SPIR-V spec (or at least is ambiguous about it). Such ops
need to be removed/transformed before lowering to SPIR-V. The
SPIRVLegalizationPass is added a place where such legalizations can be
added. Current implementation folds the subview ops with load/stores
so that the lowering itself does not have to convert a subview op.

PiperOrigin-RevId: 283642981
2019-12-03 16:06:17 -08:00
Sean Silva 82f9f9d112 Make diagnostic a bit clearer.
This prints out in case of any pass failure. Not just a crash.

PiperOrigin-RevId: 283616719
2019-12-03 14:01:25 -08:00
Andy Davis 2c13fd9f17 Add CreateMaskOp to the VectorOps dialect.
PiperOrigin-RevId: 283591888
2019-12-03 11:55:54 -08:00
Sean Silva 67515e8d7a Verifier: Better error message in case of successor operand mismatch.
In particular, print the successor number in the diagnostic.

PiperOrigin-RevId: 283585084
2019-12-03 11:24:31 -08:00
Mahesh Ravishankar 353fb2bd38 Convert MemRefType to a linearized array in SPIR-V lowering.
The SPIR-V lowering used nested !spv.arrays to represented
multi-dimensional arrays, with the hope that in-conjunction with the
layout annotations, the shape and layout of memref can be represented
directly. It is unclear though how portable this representation will
end up being. It will rely on driver compilers implementing complex
index computations faithfully. A more portable approach is to use
linearized arrays to represent memrefs and explicitly instantiate all
the index computation in SPIR-V. This gives added benefit that we can
further optimize the generated code in MLIR before generating the
SPIR-V binary.

PiperOrigin-RevId: 283571167
2019-12-03 10:21:16 -08:00
Alex Zinenko 993e79e9bd Fix ViewOp to have at most one offset operand
As described in the documentation, ViewOp is expected to take an optional
dynamic offset followed by a list of dynamic sizes. However, the ViewOp parser
did not include a check for the offset being a single value and accepeted a
list of values instead.

Furthermore, several tests have been exercising the wrong syntax of a ViewOp,
passing multiple values to the dyanmic stride list, which was not caught by the
parser. The trailing values could have been erronously interpreted as dynamic
sizes. This is likely due to resyntaxing of the ViewOp, with the previous
syntax taking the list of sizes before the offset. Update the tests to use the
syntax with the offset preceding the sizes.

Worse, the conversion of ViewOp to the LLVM dialect assumed the wrong order of
operands with offset in the trailing position, and erronously relied on the
permissive parsing that interpreted trailing dynamic offset values as leading
dynamic sizes. Fix the lowering to use the correct order of operands.

PiperOrigin-RevId: 283532506
2019-12-03 06:23:04 -08:00
Diego Caballero 330d1ff00e AffineLoopFusion: Prevent fusion of multi-out-edge producer loops
tensorflow/mlir#162 introduced a bug that
incorrectly allowed fusion of producer loops with multiple outgoing
edges. This commit fixes that problem. It also introduces a new flag to
disable sibling loop fusion so that we can test producer-consumer fusion
in isolation.

Closes tensorflow/mlir#259

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/259 from dcaballe:dcaballe/fix_multi_out_edge_producer_fusion 578d5661705fd5c56c555832d5e0528df88c5282
PiperOrigin-RevId: 283531105
2019-12-03 06:09:50 -08:00
Stephan Herhut 2125c0e3a8 Extend conversion of SubViewOp to llvm to also support cases where size and stride
are constant (i.e., there are no size and stride operands).

We recently added canonicalization that rewrites constant size and stride operands to
SubViewOp into static information in the type, so these patterns now occur during code
generation.

PiperOrigin-RevId: 283524688
2019-12-03 05:11:49 -08:00
Lei Zhang 1af9633d85 [spirv] Add spv.SubgroupBallotKHROp
PiperOrigin-RevId: 283522284
2019-12-03 04:49:56 -08:00
Alex Zinenko fdbb99cd62 Add linkage support to LLVMFuncOp
A recent commit introduced the Linkage attribute to the LLVM dialect and used
it in the Global Op. Also use it in LLVMFuncOp. As per LLVM Language Reference,
if the linkage attribute is omitted, the function is assumed to have external
linkage.

PiperOrigin-RevId: 283493299
2019-12-03 00:26:44 -08:00
Aart Bik 3126004a5a [VectorOps] Add legality rules to broadcast
PiperOrigin-RevId: 283360101
2019-12-02 09:57:27 -08:00
Lei Zhang b41162b3af [ODS] Generate builders taking unwrapped value and defaults for attributes
Existing builders generated by ODS require attributes to be passed
in as mlir::Attribute or its subclasses. This is okay foraggregate-
parameter builders, which is primarily to be used by programmatic
C++ code generation; it is inconvenient for separate-parameter
builders meant to be called in manually written C++ code because
it requires developers to wrap raw values into mlir::Attribute by
themselves.

This CL extends to generate additional builder methods that
take raw values for attributes and handles the wrapping in the
builder implementation. Additionally, if an attribute appears
late in the arguments list and has a default value, the default
value is supplied in the declaration if possible.

PiperOrigin-RevId: 283355919
2019-12-02 09:33:57 -08:00
Lei Zhang 4982eaf87c [DRR] Introduce `$_` to ignore op argument match
Right now op argument matching in DRR is position-based, meaning we need to
specify N arguments for an op with N ODS-declared argument. This can be annoying
when we don't want to capture all the arguments. `$_` is to remedy the situation.

PiperOrigin-RevId: 283339992
2019-12-02 07:54:50 -08:00
Lei Zhang 0d22a3fdc8 NFC: Update std.subview op to use AttrSizedOperandSegments
This turns a few manually written helper methods into auto-generated ones.

PiperOrigin-RevId: 283339617
2019-12-02 07:52:00 -08:00
Alexander Belyaev 9630fcbc52 Lower linalg.indexed_generic with libcall to LLVM.
PiperOrigin-RevId: 283328994
2019-12-02 06:30:52 -08:00
Alex Zinenko d5e627f84b Introduce Linkage attribute to the LLVM dialect
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.

See tensorflow/mlir#277.

PiperOrigin-RevId: 283309328
2019-12-02 03:28:10 -08:00
Jacques Pienaar 52a7415178 Fix redundant convert and use NamedAttributeList as value
* Had leftover call that would result in converting to dictionary attr before
  being implicitedly converted back to NamedAttributeList;
* NamedAttributeList is value typed, so don't use const reference;

PiperOrigin-RevId: 283072576
2019-11-29 10:26:56 -08:00
Denis Khalikov cd556f25de [spirv] Check that operand of `spirv::CompositeExtractOp` is constant while folding.
Closes tensorflow/mlir#281

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/281 from denis0x0D:sandbox/composite_ex_fold d02d73658bd1b9eaa515eb4e0aee34bc41d4252b
PiperOrigin-RevId: 282971563
2019-11-28 13:27:56 -08:00
Alex Zinenko 2f16bf7ac9 Split out FunctionLike printing/parsing into FunctionImplementation.{h,cpp}
Helper utilies for parsing and printing FunctionLike Ops are only relevant to
the implementation of the Op, not its definition. They depend on
OpImplementation.h and increase the inclusion footprint of FunctionSupport.h,
and do so only to provide some utilities in the "impl" namespace. Move them to
a separate files, similarly to OpDefinition/OpImplementation distinction, and
make only Op implementations use them while keeping headers cleaner. NFC.

PiperOrigin-RevId: 282964556
2019-11-28 11:51:23 -08:00
Lei Zhang 5810efe1f1 NFC: A few cleanups for SPIRVLowering
Updated comments and used static instead of anonymous namspace
to hide functions to be consistent with the existing codebase.

PiperOrigin-RevId: 282847784
2019-11-27 15:55:42 -08:00
Lei Zhang a4d7650230 [spirv] NFC: Add getZero() and getOne() static method to ConstantOp
Getting constant zero or one is very common so it merits a special handy
method on spirv::ConstantOp itself.

PiperOrigin-RevId: 282832572
2019-11-27 14:13:01 -08:00
Lei Zhang d4e4387fbf [spirv] Add folders for spv.IAdd and spv.IMul
Adding zero and multiplying one can be common when generating code
for index calculation.

This CL also sorted canonicalize.mlir to alphabetical order.

PiperOrigin-RevId: 282828055
2019-11-27 13:46:52 -08:00
Nicolas Vasilache 1fa8c8070b Implement Linalg to loops lowering as a pattern
This CL rewrites the linalg ops to loops transformations as patterns that can be targeted directly from Tablegen. Reliance on OpFolder is removed and to cope with it we introduce local folding patterns that are applied greedily.

PiperOrigin-RevId: 282765550
2019-11-27 07:32:13 -08:00
Aart Bik e2232fbcee [VectorOps] Refine BroadcastOp in VectorOps dialect
Since second argument is always fully overwritten and
shape is define in "to" clause, it is not needed.
Also renamed "into" to "to" now that arg is dropped.

PiperOrigin-RevId: 282686475
2019-11-26 19:52:38 -08:00
Jacques Pienaar f27ceb7261 Add create method that takes equivalent of OperationState with NamedAttributeList
This method is close to creating an OperationState first and then unpacking it
but avoids creating the OperationState and takes a NamedAttributeList for
attributes rather than array of NamedAttribute (to enable reusing an already
created NamedAttributeList).

Reuse this new method via create that takes OperationState. I'll update inferReturnTypes in follow up to also take NamedAttributeList and so a build method that uses both inferReturnTypes and create can reuse the same list.

PiperOrigin-RevId: 282651642
2019-11-26 15:30:35 -08:00
Aart Bik cf97263cb8 [VectorOps] Add a BroadcastOp to the VectorOps dialect
PiperOrigin-RevId: 282643305
2019-11-26 14:43:31 -08:00
Mahesh Ravishankar 03620fa70a Misc changes to lowering to SPIR-V.
These changes to SPIR-V lowering while adding support for lowering
SUbViewOp, but are not directly related.
- Change the lowering of MemRefType to
  !spv.ptr<!spv.struct<!spv.array<...>[offset]>, ..>
  This is consistent with the Vulkan spec.
- To enable testing a simple pattern of lowering functions is added to
  ConvertStandardToSPIRVPass. This is just used to convert the type of
  the arguments of the function. The added function lowering itself is
  not meant to be the way functions are eventually lowered into SPIR-V
  dialect.

PiperOrigin-RevId: 282589644
2019-11-26 10:11:34 -08:00
Nicolas Vasilache 109338085d Relax restriction on affine_apply dim and symbol operands
The affine_apply operation is currently "doubly" affine and conflates two things:
1. it applies an affine map to a list of values of type `index` that are defined as either dim or symbol
2. it restricts (and propagates constraints on) the provenance of dims and symbols to a small subset of ops for which more restrictive polyhedral constraints apply.

Point 2. is related to the ability to form so-called static control parts and is related to dependence analysis and legality of transformations.

Point 1. however is completely independent, the only local implication of dims and symbol for affine_apply is that dims compose while symbols concatenate as well as the structural constraint that dims may not be multiplied.

The properties of composition and canonicalization in affine_apply are more generally useful. This CL relaxes the verifier on affine_apply so it can be used more generally.

The relevant affine.for/if/load/store op verifiers already implement the dim and symbol checking.

See this thread for the related discussion: https://groups.google.com/a/tensorflow.org/g/mlir/c/HkwCbV8D9N0/m/8srUNrX6CAAJ

PiperOrigin-RevId: 282562517
2019-11-26 07:39:05 -08:00
Lei Zhang 13c6e419ca Add support for AttrSizedOperandSegments/AttrSizedResultSegments
Certain operations can have multiple variadic operands and their size
relationship is not always known statically. For such cases, we need
a per-op-instance specification to divide the operands into logical
groups or segments. This can be modeled by attributes.

This CL introduces C++ trait AttrSizedOperandSegments for operands and
AttrSizedResultSegments for results. The C++ trait just guarantees
such size attribute has the correct type (1D vector) and values
(non-negative), etc. It serves as the basis for ODS sugaring that
with ODS argument declarations we can further verify the number of
elements match the number of ODS-declared operands and we can generate
handy getter methods.

PiperOrigin-RevId: 282467075
2019-11-25 17:26:50 -08:00
Nicolas Vasilache 174076a157 Use vector.InsertStridedSlice in Vector -> Vector unrolling
This CL uses the recently added op to finish the implementation of Vector -> Vector unrolling by replacing the "fake join op" by a series of InsertStridedSliceOp.

Test is updated accordingly

PiperOrigin-RevId: 282451126
2019-11-25 15:56:37 -08:00
Nicolas Vasilache 36469f7d2a Add a vector.InsertStridedSliceOp
This new op is the counterpart of vector.StridedSliceOp and will be used for in the pattern rewrites for vector unrolling.

PiperOrigin-RevId: 282447414
2019-11-25 15:37:13 -08:00
MLIR Team 1012c492f0 Allow LLVM::ExtractElementOp to have non-i32 indices.
Also change the text format a bit, so that indices are braced by squares.

PiperOrigin-RevId: 282437095
2019-11-25 14:44:52 -08:00
Ben Vanik 38d7870ee5 Make std.divis and std.diviu support ElementsAttr folding.
PiperOrigin-RevId: 282434465
2019-11-25 14:31:43 -08:00
Mahesh Ravishankar f87b2fd41b NFC: Actually expose the implementation of createGPUToSPIRVLoweringPass.
A mismatch in the function declaration and function definition,
prevented the implementation of the createGPUToSPIRVLoweringPass from
being exposed.

PiperOrigin-RevId: 282419815
2019-11-25 13:19:53 -08:00
Mahesh Ravishankar 7fd46bf258 Add missing rule to generate SPIR-V ABI Attribute using tblgen to CMake.
PiperOrigin-RevId: 282415592
2019-11-25 12:57:16 -08:00
Andy Davis 8fc44a4d13 Update VectorContractionOp to take iterator types and index mapping attributes compatible with linalg ops.
PiperOrigin-RevId: 282412311
2019-11-25 12:40:00 -08:00
Mahesh Ravishankar bd485afda0 Introduce attributes that specify the final ABI for a spirv::ModuleOp.
To simplify the lowering into SPIR-V, while still respecting the ABI
requirements of SPIR-V/Vulkan, split the process into two
1) While lowering a function to SPIR-V (when the function is an entry
   point function), allow specifying attributes on arguments and
   function itself that describe the ABI of the function.
2) Add a pass that materializes the ABI described in the function.

Two attributes are needed.
1) Attribute on arguments of the entry point function that describe
   the descriptor_set, binding, storage class, etc, of the
   spv.globalVariable this argument will be replaced by
2) Attribute on function that specifies workgroup size, etc. (for now
   only workgroup size).

Add the pass -spirv-lower-abi-attrs to materialize the ABI described
by the attributes.

This change makes the SPIRVBasicTypeConverter class unnecessary and is
removed, further simplifying the SPIR-V lowering path.

PiperOrigin-RevId: 282387587
2019-11-25 11:19:56 -08:00
Mahesh Ravishankar 1ea231bd39 Allow memref_cast from static strides to dynamic strides.
Memref_cast supports cast from static shape to dynamic shape
memrefs. The same should be true for strides as well, i.e a memref
with static strides can be casted to a memref with dynamic strides.

PiperOrigin-RevId: 282381862
2019-11-25 11:08:56 -08:00
Nicolas Vasilache 01145544aa Add vector.insertelement op
This is the counterpart of vector.extractelement op and has the same
limitations at the moment (static I64IntegerArrayAttr to express position).
This restriction will be filterd in the future.
LLVM lowering will be added in a subsequent commit.

PiperOrigin-RevId: 282365760
2019-11-25 08:47:15 -08:00
Alex Zinenko bf4692dc49 Introduce gpu.func
Introduce a new function-like operation to the GPU dialect to provide a
placeholder for the execution semantic description and to add support for GPU
memory hierarchy.  This aligns with the overall goal of the dialect to expose
the common abstraction layer for GPU devices, in particular by providing an
MLIR unit of semantics (i.e. an operation) for memory modeling.

This proposal has been discussed in the mailing list:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/RfXNP7Hklsc/MBNN7KhjAgAJ
As decided, the "convergence" aspect of the execution model will be factored
out into a new discussion and therefore is not included in this commit. This
commit only introduces the operation but does not hook it up with the remaining
flow. The intention is to develop the new flow while keeping the old flow
operational and do the switch in a simple, separately reversible commit.

PiperOrigin-RevId: 282357599
2019-11-25 08:10:37 -08:00
Ben Vanik d2284f1f0b Support folding of StandardOps with DenseElementsAttr.
PiperOrigin-RevId: 282270243
2019-11-24 19:23:38 -08:00
Lei Zhang ae821fe626 NFC: Wire up DRR settings for SPIR-V canonicalization patterns
This CL added necessary files and settings for using DRR to
write SPIR-V canonicalization patterns and also converted the
patterns for spv.Bitcast and spv.LogicalNot.

PiperOrigin-RevId: 282132786
2019-11-23 06:59:23 -08:00
Uday Bondhugula 6a101671b0 Make isValidSymbol more powerful
The check in isValidSymbol, as far as a DimOp result went, checked if
the dim op was on a top-level memref. However, any alloc'ed, view, or
subview memref would be fine as long as the corresponding dimension of
that memref is either a static one or was in turn created using a valid
symbol in the case of dynamic dimensions.

Reported-by: Jose Gomez

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#252

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/252 from bondhugula:symbol 7b57dc394df9375e651f497231c6e4525a32a662
PiperOrigin-RevId: 282097114
2019-11-22 22:09:31 -08:00
River Riddle b8ee563449 NFC: Remove unnecessarily guarded tablegen includes.
Support for including a file multiple times was added in tablegen, removing the need for these extra guards. This is because we already insert c/c++ style header guards within each of the specific .td files.

PiperOrigin-RevId: 282076728
2019-11-22 18:01:57 -08:00
Nicolas Vasilache 9a62ec8c96 Fix Windows Build
PiperOrigin-RevId: 282048102
2019-11-22 15:07:31 -08:00
Denis Khalikov a5cda4763f [spirv] Add a canonicalizer for `spirv::LogicalNotOp`.
Add a canonicalizer for `spirv::LogicalNotOp`.
Converts:
* spv.LogicalNot(spv.IEqual(...)) -> spv.INotEqual(...)
* spv.LogicalNot(spv.INotEqual(...)) -> spv.IEqual(...)
* spv.LogicalNot(spv.LogicalEqual(...)) -> spv.LogicalNotEqual(...)
* spv.LogicalNot(spv.LogicalNotEqual(...)) -> spv.LogicalEqual(...)

Also moved the test for spv.IMul to arithemtic tests.

Closes tensorflow/mlir#256

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/256 from denis0x0D:sandbox/canon_logical_not 76ab5787b2c777f948c8978db061d99e76453d44
PiperOrigin-RevId: 282012356
2019-11-22 12:25:52 -08:00
Mahesh Ravishankar 6db8530c26 Add more canonicalizations for SubViewOp.
Depending on which of the offsets, sizes, or strides are constant, the
subview op can be canonicalized in different ways. Add such
canonicalizations, which generalize the existing approach of
canonicalizing subview op only if all of offsets, sizes and shapes are
constants.

PiperOrigin-RevId: 282010703
2019-11-22 12:14:18 -08:00
Jean-Michel Gorius 104777d8e6 Unify vector op names with other dialects.
Change vector op names from VectorFooOp to Vector_FooOp and from
vector::VectorFooOp to vector::FooOp.

Closes tensorflow/mlir#257

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/257 from Kayjukh:master dfc3a0e04114885aaec8740d5951d6984d6e1577
PiperOrigin-RevId: 281967461
2019-11-22 08:24:49 -08:00
Nicolas Vasilache 6755543af5 Move Linalg Transforms that are actually Conversions - NFC
PiperOrigin-RevId: 281844602
2019-11-21 15:41:32 -08:00
River Riddle c35378003c Add support for using the ODS result names as the Asm result names for multi-result operations.
This changes changes the OpDefinitionsGen to automatically add the OpAsmOpInterface for operations with multiple result groups using the provided ODS names. We currently just limit the generation to multi-result ops as most single result operations don't have an interesting name(result/output/etc.). An example is shown below:
// The following operation:
def MyOp : ... {
  let results = (outs AnyType:$first, Variadic<AnyType>:$middle, AnyType);
}

// May now be printed as:
%first, %middle:2, %0 = "my.op" ...

PiperOrigin-RevId: 281834156
2019-11-21 14:55:46 -08:00
Nicolas Vasilache 0abec2744c Fix OSS builds - NFC
PiperOrigin-RevId: 281757979
2019-11-21 09:07:51 -08:00
Nicolas Vasilache 663c2f731b Drop unused function - NFC
PiperOrigin-RevId: 281741923
2019-11-21 07:09:14 -08:00
Nicolas Vasilache 2c4985816f Split Linalg declarative patterns from specific test patterns - NFC
This will make it easier to scale out test patterns and build specific passes that do not interfere with independent testing.

PiperOrigin-RevId: 281736335
2019-11-21 06:40:17 -08:00
Alex Zinenko b5af3784a6 Don't force newline before function attributes
Due to legacy reasons, a newline character followed by two spaces was always
inserted before the attributes of the function Op in pretty form. This breaks
formatting when functions are nested in some other operations. Don't print the
newline and just put the attributes on the same line, which is also more
consistent with module Op. Line breaking aware of indentation can be introduced
separately into the parser if deemed useful.

PiperOrigin-RevId: 281721793
2019-11-21 05:08:19 -08:00