Commit Graph

31 Commits

Author SHA1 Message Date
Jez Ng 541390131e [lld-macho] Don't emit rebase opcodes for subtractor minuend relocs
Also add a few asserts to verify that we are indeed handling an
UNSIGNED relocation as the minued. I haven't made it an actual
user-facing error since I don't think llvm-mc is capable of generating
SUBTRACTOR relocations without an associated UNSIGNED.

Reviewed By: #lld-macho, smeenai

Differential Revision: https://reviews.llvm.org/D97103
2021-02-27 12:31:34 -05:00
Jez Ng 5e851733c5 [lld-macho] Fix semantics & add tests for ARM64 GOT/TLV relocs
I've adjusted the RelocAttrBits to better fit the semantics of
the relocations. In particular:

1. *_UNSIGNED relocations are no longer marked with the `TLV` bit, even
   though they can occur within TLV sections. Instead the `TLV` bit is
   reserved for relocations that can reference thread-local symbols, and
   *_UNSIGNED relocations have their own `UNSIGNED` bit. The previous
   implementation caused TLV and regular UNSIGNED semantics to be
   conflated, resulting in rebase opcodes being incorrectly emitted for TLV
   relocations.

2. I've added a new `POINTER` bit to denote non-relaxable GOT
   relocations. This distinction isn't important on x86 -- the GOT
   relocations there are either relaxable or non-relaxable loads -- but
   arm64 has `GOT_LOAD_PAGE21` which loads the page that the referent
   symbol is in (regardless of whether the symbol ends up in the GOT). This
   relocation must reference a GOT symbol (so must have the `GOT` bit set)
   but isn't itself relaxable (so must not have the `LOAD` bit). The
   `POINTER` bit is used for relocations that *must* reference a GOT
   slot.

3. A similar situation occurs for TLV relocations.

4. ld64 supports both a pcrel and an absolute version of
   ARM64_RELOC_POINTER_TO_GOT. But the semantics of the absolute version
   are pretty weird -- it results in the value of the GOT slot being
   written, rather than the address. (That means a reference to a
   dynamically-bound slot will result in zeroes being written.) The
   programs I've tried linking don't use this form of the relocation, so
   I've dropped our partial support for it by removing the relevant
   RelocAttrBits.

Reviewed By: alexshap

Differential Revision: https://reviews.llvm.org/D97031
2021-02-23 22:02:38 -05:00
Greg McGary 87104faac4 [lld-macho] Add ARM64 target arch
This is an initial base commit for ARM64 target arch support. I don't represent that it complete or bug-free, but wish to put it out for review now that some basic things like branch target & load/store address relocs are working.

I can add more tests to this base commit, or add them in follow-up commits.

It is not entirely clear whether I use the "ARM64" (Apple) or "AArch64" (non-Apple) naming convention. Guidance is appreciated.

Differential Revision: https://reviews.llvm.org/D88629
2021-02-08 18:14:07 -07:00
Greg McGary 3a9d2f1488 [lld-macho][NFC] refactor relocation handling
Add per-reloc-type attribute bits and migrate code from per-target file into target independent code, driven by reloc attributes.

Many cleanups

Differential Revision: https://reviews.llvm.org/D95121
2021-02-02 10:54:53 -07:00
Kazu Hirata fb98a1be43 Fix the warnings on unused variables (NFC) 2021-01-13 13:32:40 -08:00
Jez Ng daaaed6bb8 [lld-macho] Fix TLV data initialization
We were mishandling the case where both `__tbss` and `__thread_data` sections were
present.

TLVP relocations should be encoded as offsets from the start of `__thread_data`,
even if the symbol is actually located in `__thread_bss`. Previously, we were
writing the offset from the start of the containing section, which doesn't
really make sense since there's no way `tlv_get_addr()` can know which section a
given `tlv$init` symbol is in at runtime.

In addition, this patch ensures that we place `__thread_data` immediately before
`__thread_bss`. This is what ld64 does, likely for performance reasons. Zerofill
sections must also be at the end of their segments; we were already doing this,
but now we ensure that `__thread_bss` occurs before `__bss`, so that it's always
possible to have it contiguous with `__thread_data`.

Fixes llvm.org/PR48657.

Reviewed By: #lld-macho, thakis

Differential Revision: https://reviews.llvm.org/D94329
2021-01-08 18:48:12 -05:00
Jez Ng 7b007ac080 [lld-macho][nfc] Move some methods from InputFile to ObjFile
Additionally:
1. Move the helper functions in InputSection.h below the definition of
   `InputSection`, so the important stuff is on top
2. Remove unnecessary `explicit`

Reviewed By: #lld-macho, compnerd

Differential Revision: https://reviews.llvm.org/D92453
2020-12-08 10:34:32 -08:00
Jez Ng c7dbaec396 [lld-macho] Add isCodeSection()
This is the same logic that ld64 uses to determine which sections
contain functions. This was added so that we could determine which
STABS entries should be N_FUN.

Reviewed By: clayborg

Differential Revision: https://reviews.llvm.org/D92430
2020-12-01 15:05:21 -08:00
Greg McGary 1a3ef0417c [lld-macho] In the context of relocs, s/target/referent/ for sections & symbols
The word "target" is overloaded, so lighten its load by using another word to denote the symbol or section to which a reloc points. While more stilted than "target", "referent" is rather less pompous than "designatum" or "denotatum". :P

Along the way, make a few neighboring variable names more descriptive.

Reviewed By: #lld-macho, int3

Differential Revision: https://reviews.llvm.org/D87584
2020-09-22 20:31:01 -07:00
Jez Ng 3c9100fb78 [lld-macho] Support dynamic linking of thread-locals
References to symbols in dylibs work very similarly regardless of
whether the symbol is a TLV. The main difference is that we have a
separate `__thread_ptrs` section that acts as the GOT for these
thread-locals.

We can identify thread-locals in dylibs by a flag in their export trie
entries, and we cross-check it with the relocations that refer to them
to ensure that we are not using a GOT relocation to reference a
thread-local (or vice versa).

Reviewed By: #lld-macho, smeenai

Differential Revision: https://reviews.llvm.org/D85081
2020-08-12 19:50:09 -07:00
Jez Ng ca85e37338 [lld-macho] Support static linking of thread-locals
Note: What ELF refers to as "TLS", Mach-O seems to refer to as "TLV", i.e.
thread-local variables.

This diff implements support for TLV relocations that reference defined
symbols. On x86_64, TLV relocations are always used with movq opcodes, so for
defined TLVs, we don't need to create a synthetic section to store the
addresses of the symbols -- we can just convert the `movq` to a `leaq`.

One notable quirk of Mach-O's TLVs is that absolute-address relocations
inside TLV-defining sections behave differently -- their addresses are
no longer absolute, but relative to the start of the target section.
(AFAICT, RIP-relative relocations are not allowed in these sections.)

Reviewed By: #lld-macho, compnerd, smeenai

Differential Revision: https://reviews.llvm.org/D85080
2020-08-07 11:04:52 -07:00
Jez Ng 74871cdad7 [lld-macho] Ensure __bss sections we output have file offset of zero
Summary:
llvm-mc emits `__bss` sections with an offset of zero, but we weren't expecting
that in our input, so we were copying non-zero data from the start of the file and
putting it in `__bss`, with obviously undesirable runtime results. (It appears that
the kernel will copy those nonzero bytes as long as the offset is nonzero, regardless
of whether S_ZERO_FILL is set.)

I debated on whether to make a special ZeroFillSection -- separate from a
regular InputSection -- but it seemed like too much work for now. But I'm happy
to refactor if anyone feels strongly about having it as a separate class.

Depends on D80857.

Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee

Reviewed By: smeenai

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80859
2020-06-17 20:41:28 -07:00
Jez Ng a12e7d406d [lld-macho] Handle GOT relocations of non-dylib symbols
Summary:
Turns out this case is actually really common -- it happens whenever there's
a reference to an `extern` variable that ends up statically linked.

Depends on D80856.

Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee

Reviewed By: smeenai

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80857
2020-06-17 20:41:28 -07:00
Jez Ng 53c796b948 [lld-macho] Properly handle & validate relocation r_length
Summary:
We should be reading / writing our addends / relocated addresses based on
r_length, and not just based on the type of the relocation. But since only
some r_length values are valid for a given reloc type, I've also added some
validation.

ld64 has code to allow for r_length = 0 in X86_64_RELOC_BRANCH relocs, but I'm
not sure how to create such a relocation...

Reviewed By: smeenai

Differential Revision: https://reviews.llvm.org/D80854
2020-06-14 16:35:23 -07:00
Jez Ng df2a5778c3 [lld-macho] Error on encountering undefined symbols
... instead of silently emitting a reference to the zero address.

Reviewed By: smeenai

Differential Revision: https://reviews.llvm.org/D80169
2020-06-02 13:19:38 -07:00
Jez Ng ce0d8beebc [lld-macho][re-land] Support X86_64_RELOC_UNSIGNED
This reverts commit db8559eee4.
2020-05-19 12:31:55 -07:00
Jez Ng 4eb6f4854e [lld-macho][re-land] Support .subsections_via_symbols
Summary:
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.

The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.

We exercise this functionality in our tests by using order files that
rearrange those symbols.

Depends on D79668.

Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee

Reviewed By: smeenai

Subscribers: thakis, llvm-commits, pcc, ruiu

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79926
2020-05-19 12:31:54 -07:00
Jez Ng 70fbbcdd34 Revert "[lld-macho] Support .subsections_via_symbols"
Due to build breakage mentioned in https://reviews.llvm.org/D79926.

This reverts commit e270b2f172.
2020-05-19 08:30:02 -07:00
Jez Ng db8559eee4 Revert "[lld-macho] Support X86_64_RELOC_UNSIGNED"
This reverts commit 1f820e3559.
2020-05-19 08:30:02 -07:00
Jez Ng 1f820e3559 [lld-macho] Support X86_64_RELOC_UNSIGNED
Note that it's only used for non-pc-relative contexts.

Reviewed By: MaskRay, smeenai

Differential Revision: https://reviews.llvm.org/D80048
2020-05-19 07:46:57 -07:00
Jez Ng e270b2f172 [lld-macho] Support .subsections_via_symbols
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.

The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.

We exercise this functionality in our tests by using order files that
rearrange those symbols.

Reviewed By: smeenai

Differential Revision: https://reviews.llvm.org/D79926
2020-05-19 07:46:57 -07:00
Jez Ng 198b0c57df [lld-macho] Support pc-relative section relocations
Summary: So far we've only supported symbol relocations.

Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79211
2020-05-09 20:56:23 -07:00
Jez Ng b3e2fc931d [lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.

ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).

Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.

The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.

Depends on D78269.

Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78270
2020-05-09 20:56:22 -07:00
Kellie Medlin 6cb073133c [lld] Merge Mach-O input sections
Summary: Similar to other formats, input sections in the MachO
implementation are now grouped under output sections. This is primarily
a refactor, although there's some new logic (like resolving the output
section's flags based on its inputs).

Differential Revision: https://reviews.llvm.org/D77893
2020-05-01 16:57:18 -07:00
Jez Ng df92377823 [lld-macho] Have Symbol::getVA() return a non-relative virtual address
Currently, getVA() returns a virtual address with the assumption that
the ImageBase is zero. As I understand, this is what lld-ELF is doing.
However, under our current design, it seems like an awkward setup --
I'm finding that I have to add and subtract ImageBase in several places
to make things work out.

As such, I think it's simpler to have getVA() return a non-relative VA,
but I'm not sure if I'm missing something. Would love to hear more from
folks familiar with lld-ELF.

Differential Revision: https://reviews.llvm.org/D78168
2020-04-29 15:44:50 -07:00
Shoaib Meenai af40bff32d [MachO] Fix UB in memcpy
UBSan complains about a memcpy with a null pointer, so just skip the
memcpy call if the data is empty.
2020-04-28 11:33:54 -07:00
Jez Ng 6f63216c3d [lld-macho] Extend SyntheticSections to cover all segment load commands
Previously, the special segments `__PAGEZERO` and `__LINKEDIT` were
implemented as special LoadCommands. This diff implements them using
special sections instead which have an `isHidden()` attribute. We do not
emit section headers for hidden sections, but we use their addresses and
file offsets to determine that of their containing segments. In addition
to allowing us to share more segment-related code, this refactor is also
important for the next step of emitting dylibs:

1) dylibs don't have segments like __PAGEZERO, so we need an easy way of
   omitting them w/o messing up segment indices
2) Unlike the kernel, which is happy to run an executable with
   out-of-order segments, dyld requires dylibs to have their segment
   load commands arranged in increasing address order. The refactor
   makes it easier to implement sorting of sections and segments.

Differential Revision: https://reviews.llvm.org/D76839
2020-04-27 12:58:12 -07:00
Jez Ng 060efd24c7 [lld-macho] Add basic support for linking against dylibs
This diff implements:

* dylib loading (much of which is being restored from @pcc and @ruiu's
  original work)
* The GOT_LOAD relocation, which allows us to load non-lazy dylib
  symbols
* Basic bind opcode emission, which tells `dyld` how to populate the GOT

Differential Revision: https://reviews.llvm.org/D76252
2020-04-21 13:43:19 -07:00
Fangrui Song 6acd300375 Reland D75382 "[lld] Initial commit for new Mach-O backend"
With a fix for http://lab.llvm.org:8011/builders/clang-cmake-armv8-lld/builds/3636

Also trims some unneeded dependencies.
2020-04-02 12:03:43 -07:00
Oliver Stannard af39151f3c Revert "[lld] Initial commit for new Mach-O backend"
This is causing buildbot failures on 32-bit hosts, for example:
http://lab.llvm.org:8011/builders/clang-cmake-armv8-lld/builds/3636

This reverts commit 03f43b3aca.
2020-04-02 13:23:30 +01:00
Jez Ng 03f43b3aca [lld] Initial commit for new Mach-O backend
Summary:
This is the first commit for the new Mach-O backend, designed to roughly
follow the architecture of the existing ELF and COFF backends, and
building off work that @ruiu and @pcc did in a branch a while back. Note
that this is a very stripped-down commit with the bare minimum of
functionality for ease of review. We'll be following up with more diffs
soon.

Currently, we're able to generate a simple "Hello World!" executable
that runs on OS X Catalina (and possibly on earlier OS X versions; I
haven't tested them). (This executable can be obtained by compiling
`test/MachO/relocations.s`.) We're mocking out a few load commands to
achieve this -- for example, we can't load dynamic libraries, but
Catalina requires binaries to be linked against `dyld`, so we hardcode
the emission of a `LC_LOAD_DYLIB` command. Other mocked out load
commands include LC_SYMTAB and LC_DYSYMTAB.

Differential Revision: https://reviews.llvm.org/D75382
2020-03-31 11:58:47 -07:00