Summary:
It is not used. It uses macro-based unrolling instead of variadic
templates, so it is not idiomatic anymore, and therefore it is a
questionable API to keep "just in case".
Subscribers: mgorny, dmgreen, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66961
llvm-svn: 370441
...cloning a function from a different module
Currently when a function with debug info is cloned from a different module, the
cloned function may have hanging DICompileUnits, so that the module with the
cloned function fails debug info verification.
The proposed fix inserts all DICompileUnits reachable from the cloned function
to "llvm.dbg.cu" metadata operands of the cloned function module.
Reviewed By: aprantl, efriedma
Differential Revision: https://reviews.llvm.org/D66510
Patch by Oleg Pliss (Oleg.Pliss@azul.com)
llvm-svn: 370265
Summary:
This patch adds support for scalable vectors in intrinsics, enabling
intrinsics such as the following to be defined:
declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 4 x i32>)
Support for this is implemented by defining a new type descriptor for
scalable vectors and adding mangling support for scalable vector types
in the name mangling scheme used by 'any' types in intrinsic signatures.
Tests have been added for IRBuilder to test scalable vectors work as
expected when using intrinsics through this interface. This required
implementing an intrinsic that is explicitly defined with scalable
vectors, e.g. LLVMType<nxv4i32>, an SVE floating-point convert
intrinsic was used for this. The behaviour of the overloaded type
LLVMScalarOrSameVectorWidth with scalable vectors is tested using the
existing masked load intrinsic. Also added an .ll test to test the
Verifier catches a bad intrinsic argument when passing a fixed-width
predicate (mask) to the masked.load intrinsic where a scalable is
expected.
Patch by Paul Walker
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D65930
llvm-svn: 370053
Summary:
This is motivated by D63591, where we realized that there isn't a really
good way of telling whether a DataExtractor is reading actual data, or
is it just returning default values because it reached the end of the
buffer.
This patch resolves that by providing a new "Cursor" class. A Cursor
object encapsulates two things:
- the current position/offset in the DataExtractor
- an error object
Storing the error object inside the Cursor enables one to use the same
pattern as the std::{io}stream API, where one can blindly perform a
sequence of reads and only check for errors once at the end of the
operation. Similarly to the stream API, as soon as we encounter one
error, all of the subsequent operations are skipped (return default
values) too, even if the would suceed with clear error state. Unlike the
std::stream API (but in line with other llvm APIs), we force the error
state to be checked through usage of llvm::Error.
Reviewers: probinson, dblaikie, JDevlieghere, aprantl, echristo
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63713
llvm-svn: 370042
In r369808 the failure scheme for ORC symbols was changed to make
MaterializationResponsibility objects responsible for failing the symbols
they represented. This simplifies error logic in the case where symbols are
still covered by a MaterializationResponsibility, but left a gap in error
handling: Symbols that have been emitted but are not yet ready (due to a
dependence on some unemitted symbol) are not covered by a
MaterializationResponsibility object. Under the scheme introduced in r369808
such symbols would be moved to the error state, but queries on those symbols
were never notified. This led to deadlocks when such symbols were failed.
This commit updates error logic to immediately fail queries on any symbol that
has already been emitted if one of its dependencies fails.
llvm-svn: 369976
Symbols that have not been queried will not have MaterializingInfo entries,
so remove the assert that all failed symbols should have these entries.
Also updates the loop to only remove entries that were found earlier.
llvm-svn: 369975
This should let us get rid of StringLiteral in the long term and avoid
chasing accidental StringRef globals once and for all.
This requires C++14, I godbolted it on every compiler I know we support
so I hope there won't be much fallout.
llvm-svn: 369961
If the dependencies are not removed then a late failure (one symbol covered by
the query failing after others have already been resolved) can result in an
attempt to detach the query from already finalized symbol, resulting in an
assert/crash. This patch fixes the issue by removing query dependencies in
JITDylib::resolve for symbols that meet the required state.
llvm-svn: 369809
When symbols are failed (via MaterializationResponsibility::failMaterialization)
any symbols depending on them will now be moved to an error state. Attempting
to resolve or emit a symbol in the error state (via the notifyResolved or
notifyEmitted methods on MaterializationResponsibility) will result in an error.
If notifyResolved or notifyEmitted return an error due to failure of a
dependence then the caller should log or discard the error and call
failMaterialization to propagate the failure to any queries waiting on the
symbols being resolved/emitted (plus their dependencies).
llvm-svn: 369808
This is a patch split from https://reviews.llvm.org/D66374. It tries to add
a new format of profile called ExtBinary. The format adds a section header
table to the profile and organize the profile in sections, so the future
extension like adding a new section or extending an existing section will be
easier while keeping backward compatiblity feasible.
Differential Revision: https://reviews.llvm.org/D66513
llvm-svn: 369798
Summary:
There was a subtle, but pretty important difference between the Slice
and regular versions of this function. The Slice function was
zero-initializing the rest of the buffer when the read syscall returned
less bytes than expected, while the regular function did not.
This patch removes the inconsistency by making both functions *not*
zero-initialize the buffer. The zeroing code is moved to the
MemoryBuffer class, which is currently the only user of this code. This
makes the API more consistent, and the code shorter.
While in there, I also refactor the functions to return the number of
bytes through the regular return value (via Expected<size_t>) instead of
a separate by-ref argument.
Reviewers: aganea, rnk
Subscribers: kristina, Bigcheese, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66471
llvm-svn: 369627
The full GSYM patch started with: https://reviews.llvm.org/D53379
This patch add the ability to encode data using the new llvm::gsym::FileWriter class.
FileWriter is a simplified binary data writer class that doesn't require targets, target definitions, architectures, or require any other optional compile time libraries to be enabled via the build process. This class needs the ability to seek to different spots in the binary data that it produces to fix up offsets and sizes in GSYM data. It currently uses std::ostream over llvm::raw_ostream because llvm::raw_ostream doesn't support seeking which is required when encoding and decoding GSYM data.
AddressRange objects are encoded and decoded to be relative to a base address. This will be the FunctionInfo's start address if the AddressRange is directly contained in a FunctionInfo, or a base address of the containing parent AddressRange or AddressRanges. This allows address ranges to be efficiently encoded using ULEB128 encodings as we encode the offset and size of each range instead of full addresses. This also makes encoded addresses easy to relocate as we just need to relocate one base address.
Differential Revision: https://reviews.llvm.org/D63828
llvm-svn: 369587
Summary:
Tapi files are YAML files that start with the !tapi tag. The only execption are
TBD v1 files, which don't have a tag. In that case we have to scan a little
further and check if the first key "archs" exists.
This is the first patch in a series of patches to add libObject support for
text-based dynamic library (.tbd) files.
This patch is practically exactly the same as D37820, that was never pushed to master,
and is needed for future commits related to reading tbd files for llvm-nm
Reviewers: ributzka, steven_wu, bollu, espindola, jfb, shafik, jdoerfert
Reviewed By: steven_wu
Subscribers: dexonsmith, llvm-commits
Tags: #llvm, #clang, #sanitizers, #lldb, #libc, #openmp
Differential Revision: https://reviews.llvm.org/D66149
llvm-svn: 369579
Renames GTEST_NO_LLVM_RAW_OSTREAM -> GTEST_NO_LLVM_SUPPORT and guards
the new features behind it.
This reverts commit a063bcf3ef5a879adbe9639a3c187d876eee0e66.
llvm-svn: 369527
Summary:
These are detected by gtest as containers, and so previously printed as e.g.
{ '.' (46, 0x2E), 's' (115, 0x73), 'e' (101, 0x65), 'c' (99, 0x63), '0' (48, 0x30) },
gtest itself overloads PrintTo for std::string and friends, we use the same mechanism.
Reviewers: labath
Subscribers: dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66520
llvm-svn: 369518
Summary:
The code for serializing minidumps was living in MinidumpYAML.cpp
so that it would be accessible from unit tests. While this had its
advantages, it was also unfortunate because it broke symmetry with all
other yaml2obj serializers.
Fortunately, nowadays all of yaml2obj is a library, so we don't need to
do anything special. This patch improves the code consistency by moving
the serialization code to MinidumpEmitter.cpp to match the style used in
other backends. It also removes the writeAsBinary entry point in favor
of the more general convertYAML interface.
This patch is just massaging the code a bit. There shouldn't be any
functional change here.
Reviewers: jhenderson, abrachet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66474
llvm-svn: 369517
In particular, make TinyPtrVector<PtrIntPair<T *, 1>> work. Remove all
unnecessary assumptions that the element type has a formal "null"
representation. The important property to maintain is that
default-constructed element type has the same internal representation
as the default-constructed PointerUnion (all zero bits).
Remove the incorrect recursive behavior from
PointerUnion::isNull. This was never generally correct because it only
recursed over the first type parameter. With variadic templates it's
completely unnecessary.
llvm-svn: 369473
This recommits r368977, which was reverted in r369027 due to test
failures in lldb. The cause of this was different behavior of
readNativeFileSlice on windows and unix. These have been addressed in
r369269.
The original commit message was:
In case the function was called with a desired read size *and* the file
was not an "mmap()" candidate, the function was falling back to a
"pread()", but it was failing to check the result of that system call.
This meant that the function would return "success" even though the read
operation failed, and it returned a buffer full of uninitialized memory.
Reviewers: rnk, dblaikie
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66224
llvm-svn: 369370
Summary:
rL367756 (f5c40cb) increases the dependency of LLVMOrcJIT on LLVMPasses.
In particular, symbols defined in LLVMPasses that are referenced by the
destructor of `PassBuilder` are now referenced by LLVMOrcJIT through
`Speculation.cpp.o`.
We believe that referencing symbols defined in LLVMPasses in the
destructor of `PassBuilder` is valid, and that adding to the set of such
symbols is legitimate. To support such cases, this patch adds LLVMPasses
to the set of libraries being linked when linking in LLVMOrcJIT causes
such symbols from LLVMPasses to be referenced.
Reviewers: Whitney, anhtuyen, pree-jackie
Reviewed By: pree-jackie
Subscribers: mgorny, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66441
llvm-svn: 369310
Summary:
The windows version implementation of readNativeFileSlice, was trying to
match the POSIX behavior of not treating EOF as an error, but it was
only handling the case of reading from a pipe. Attempting to read past
the end of a regular file returns a slightly different error code, which
needs to be handled too. This patch adds ERROR_HANDLE_EOF to the list of
error codes to be treated as an end of file, and adds some unit tests
for the API.
This issue was found while attempting to land D66224, which caused a bunch of
lldb tests to start failing on windows.
Reviewers: rnk, aganea
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66344
llvm-svn: 369269
All uses of llvm::make_unique should have been replaced with
std::make_unique. This patch represents the last part of the migration
and removes the utility from LLVM.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 369130
Summary:
To be able to use the TextAPI/Reader for tbd file consumption (by libObject)
it gets passed a MemoryBufferRef which isn't castable to MemoryBuffer.
Updated the tests to expect that input as well.
Reviewers: ributzka, steven_wu
Reviewed By: steven_wu
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66147
llvm-svn: 369119
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Summary:
In case the function was called with a desired read size *and* the file
was not an "mmap()" candidate, the function was falling back to a
"pread()", but it was failing to check the result of that system call.
This meant that the function would return "success" even though the read
operation failed, and it returned a buffer full of uninitialized memory.
Reviewers: rnk, dblaikie
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66224
llvm-svn: 368977
This reverts commit r368849, because it breaks some bots (e.g.
llvm-clang-x86_64-win-fast).
It turns out this is not as NFC as we had hoped, because operator== will
consider two std::error_codes to be distinct even though they both hold
"success" values if they have different categories.
llvm-svn: 368854
Summary:
The main motivation for this is unit tests, which contain a large macro
for pretty-printing std::error_code, and this macro is duplicated in
every file that needs to do this. However, the functionality may be
useful elsewhere too.
In this patch I have reimplemented the existing ASSERT_NO_ERROR macros
to reuse the new functionality, but I have kept the macro (as a
one-liner) as it is slightly more readable than ASSERT_EQ(...,
std::error_code()).
Reviewers: sammccall, ilya-biryukov
Subscribers: zturner, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65643
llvm-svn: 368849
This patch replaces the JITDylib::DefinitionGenerator typedef with a class of
the same name, and adds support for attaching a sequence of DefinitionGeneration
objects to a JITDylib.
This patch also adds a new definition generator,
StaticLibraryDefinitionGenerator, that can be used to add symbols fom a static
library to a JITDylib. An object from the static library will be added (via
a supplied ObjectLayer reference) whenever a symbol from that object is
referenced.
To enable testing, lli is updated to add support for the --extra-archive option
when running in -jit-kind=orc-lazy mode.
llvm-svn: 368707
- There was a simple typo in TextStub code that prevented version 3 files to be read.
- Included a version 3 unit test to handle the differences in the format.
- Also a typo in Error.h inside the comments.
https://reviews.llvm.org/D66041
This patch is from Cyndy Ishida <cyndy_ishida@apple.com>.
llvm-svn: 368630
https://reviews.llvm.org/D66039
We were using getIndexSize instead of getIndexSizeInBits().
Added test case for G_PTRTOINT and G_INTTOPTR.
llvm-svn: 368618
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
Without this patch computeConstantDifference returns None for cases like
these:
computeConstantDifference(%x, %x)
computeConstantDifference({%x,+,16}, {%x,+,16})
Differential Revision: https://reviews.llvm.org/D65474
llvm-svn: 368193
Some of these names were abbreviated, some were not, some pluralised,
some not. Made the API difficult to use - since it's an exact 1:1
mapping to the DWARF sections - use those names (changing underscore
separation for camel casing).
llvm-svn: 368189
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065
This fixes a bug for making path with a //net style root absolute. I
discovered the bug while writing a test case for the VFS, which uses
these paths because they're both legal absolute paths on Windows and
Unix.
Differential revision: https://reviews.llvm.org/D65675
llvm-svn: 368053
To support spilling/filling of scalable vectors we need a more generic
representation of a stack offset than simply 'int'.
For this we introduce the StackOffset struct, which comprises multiple
offsets sized by their respective MVTs. Byte-offsets will thus be a simple
tuple such as { offset, MVT::i8 }. Adding two byte-offsets will result in a
byte offset { offsetA + offsetB, MVT::i8 }. When two offsets have different
types, we can canonicalise them to use the same MVT, as long as their
runtime sizes are guaranteed to have the same size-ratio as they would have
at compile-time.
When we have both scalable- and fixed-size objects on the stack, we can
create an offset that is:
({ offset_fixed, MVT::i8 } + { offset_scalable, MVT::nxv1i8 })
The struct also contains a getForFrameOffset() method that is specific to
AArch64 and decomposes the frame-offset to be used directly in instructions
that operate on the stack or index into the stack.
Note: This patch adds StackOffset as an AArch64-only concept, but we would
like to make this a generic concept/struct that is supported by all
interfaces that take or return stack offsets (currently as 'int'). Since
that would be a bigger change that is currently pending on D32530 landing,
we thought it makes sense to first show/prove the concept in the AArch64
target before proposing to roll this out further.
Reviewers: thegameg, rovka, t.p.northover, efriedma, greened
Reviewed By: rovka, greened
Differential Revision: https://reviews.llvm.org/D61435
llvm-svn: 368024