Commit Graph

7634 Commits

Author SHA1 Message Date
Chris Jackson fa1fe93789 [llvm-objcopy] Allow the visibility of symbols created by --binary and
--add-symbol to be specified with --new-symbol-visibility

llvm-svn: 370458
2019-08-30 10:17:16 +00:00
Roman Lebedev 5c9f3cfec7 [LoopIdiomRecognize] BCmp loop idiom recognition
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 370454
2019-08-30 09:51:23 +00:00
Craig Topper 5a43fdd313 [X86] Remove what little support we had for MPX
-Deprecate -mmpx and -mno-mpx command line options
-Remove CPUID detection of mpx for -march=native
-Remove MPX from all CPUs
-Remove MPX preprocessor define

I've left the "mpx" string in the backend so we don't fail on old IR, but its not connected to anything.

gcc has also deprecated these command line options. https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX

Differential Revision: https://reviews.llvm.org/D66669

llvm-svn: 370393
2019-08-29 18:09:02 +00:00
Craig Topper a47db7110d [X86][ReleaseNotes] Add a note about the switch to widening legalization for narrow vectors.
llvm-svn: 370233
2019-08-28 17:18:56 +00:00
Kevin P. Neal ddf13c00ed [FPEnv] Add fptosi and fptoui constrained intrinsics.
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.

Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.

Reviewed by:	Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by:	Craig Topper
Differential Revision:	http://reviews.llvm.org/D63782

llvm-svn: 370228
2019-08-28 16:33:36 +00:00
Shafik Yaghmour 5dca5efc0b Debug Info: Support for DW_AT_export_symbols for anonymous structs
This implements the DWARF 5 feature described in:

http://dwarfstd.org/ShowIssue.php?issue=141212.1

To support recognizing anonymous structs:

  struct A {
    struct { // Anonymous struct
        int y;
    };
  }   a;

This patch adds a new (DI)flag to LLVM metadata:

ExportSymbols

Differential Revision: https://reviews.llvm.org/D66352

llvm-svn: 369781
2019-08-23 17:19:21 +00:00
Sylvestre Ledru c2ca965c89 Fix some regressions caused by r369553 on old versions of Debian and Ubuntu
It was causing some errors like:

Encoding error:
'ascii' codec can't decode byte 0xe2 in position 341: ordinal not in range(128)
The full traceback has been saved in /tmp/sphinx-err-y2fq4dtb.log, if you want to report the issue to the developers.

llvm-svn: 369644
2019-08-22 12:16:08 +00:00
Mitch Phillips 84b762af3b [docs] Add GwpAsan to toctree.
Reverts rL369556 in the process, as it's no longer needed.

llvm-svn: 369560
2019-08-21 18:31:03 +00:00
Jordan Rupprecht e4876c9d71 [docs] Fix GwpAsan.rst
llvm-svn: 369556
2019-08-21 18:09:31 +00:00
Mitch Phillips 2213bbb57a Add newline to GWP-ASan sphinx document.
Should fix the document builder.

llvm-svn: 369554
2019-08-21 18:03:11 +00:00
Jordan Rupprecht a28b8d78e4 [docs] Convert remaining command guide entries from md to rst.
Summary:
Linking between markdown and rst files is currently not supported very well, e.g. the current llvm-addr2line docs [1] link to "llvm-symbolizer" instead of "llvm-symbolizer.html". This is weirdly broken in different ways depending on which versions of sphinx and recommonmark are being used, so workaround the bug by using rst everywhere.

[1] http://llvm.org/docs/CommandGuide/llvm-addr2line.html

Reviewers: jhenderson

Reviewed By: jhenderson

Subscribers: lebedev.ri, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66305

llvm-svn: 369553
2019-08-21 18:00:17 +00:00
Mitch Phillips c776f3f3c2 [GWP-ASan] Add public-facing documentation [6].
Summary:
Note: Do not submit this documentation until Scudo support is reviewed and submitted (should be #[5]).

See D60593 for further information.

This patch introduces the public-facing documentation for GWP-ASan, as well as updating the definition of one of the options, which wasn't properly merged. The document describes the design and features of GWP-ASan, as well as how to use GWP-ASan from both a user's standpoint, and development documentation for supporting allocators.

Reviewers: jfb, morehouse, vlad.tsyrklevich

Reviewed By: morehouse, vlad.tsyrklevich

Subscribers: kcc, dexonsmith, kubamracek, cryptoad, jfb, #sanitizers, llvm-commits, vlad.tsyrklevich, morehouse

Tags: #sanitizers, #llvm

Differential Revision: https://reviews.llvm.org/D62875

llvm-svn: 369552
2019-08-21 17:53:51 +00:00
DeForest Richards c944438dfd [Docs] Test commit
Fixes typo - Removes extra space between last word of sentence and period.

llvm-svn: 369216
2019-08-18 19:07:10 +00:00
Siva Chandra 0890f0f3de Add LLVMLibC proposal to docs/index.rst.
Reviewers: rupprecht

Subscribers: arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66307

llvm-svn: 369030
2019-08-15 18:08:11 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
Siva Chandra 1c34d10776 Add a proposal for a libc project under the LLVM umbrella.
Reviewers: chandlerc, dlj, echristo, hfinkel, jfb, zturner

Subscribers: dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64939

llvm-svn: 369012
2019-08-15 15:50:42 +00:00
Florian Hahn de1d6c8220 Add ptrmask intrinsic
This patch adds a ptrmask intrinsic which allows masking out bits of a
pointer that must be zero when accessing it, because of ABI alignment
requirements or a restriction of the meaningful bits of a pointer
through the data layout.

This avoids doing a ptrtoint/inttoptr round trip in some cases (e.g. tagged
pointers) and allows us to not lose information about the underlying
object.

Reviewers: nlopes, efriedma, hfinkel, sanjoy, jdoerfert, aqjune

Reviewed by: sanjoy, jdoerfert

Differential Revision: https://reviews.llvm.org/D59065

llvm-svn: 368986
2019-08-15 10:12:26 +00:00
Chris Jackson e5cdfbc65c [llvm-objcopy] Allow 'protected' visibility to be set when using
add-symbol

Reviewers: Maskray, rupprecht

Differential Revision: https://reviews.llvm.org/D65891

llvm-svn: 368982
2019-08-15 09:45:09 +00:00
Jordan Rupprecht 1737f71322 [docs] Fix sphinx doc generation errors
Summary:
Errors fixed:
 - GettingStarted: Duplicate explicit target name: "cmake"
 - GlobalISel: Unexpected indentation
 - LoopTerminology: Explicit markup ends without a blank line; unexpected unindent
 - ORCv2: Definition list ends without a blank line; unexpected unindent
 - Misc: document isn't included in any toctree

Verified that a clean docs build (`rm -rf docs/ && ninja docs-llvm-html`) passes with no errors. Spot checked the individual pages to make sure they look OK.

Reviewers: thakis, dsanders

Reviewed By: dsanders

Subscribers: arphaman, llvm-commits, lhames, rovka, dsanders, reames

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66183

llvm-svn: 368932
2019-08-14 22:18:01 +00:00
Erich Keane 0e85f18ded Add support in CMake to statically link the C++ standard library.
It is sometimes useful to have the C++ standard library linked into the
assembly when compiling clang, particularly when distributing a compiler
onto systems that don't have a copy of stdlibc++ or libc++ installed.

This functionality should work with either GCC or Clang as the host
compiler, though statically linking libc++ (as may be required for
licensing purposes) is only possible if the host compiler is Clang with
a copy of libc++ available.

Differential Revision: https://reviews.llvm.org/D65603

llvm-svn: 368907
2019-08-14 19:55:59 +00:00
JF Bastien b13c8ca9eb Move to C++14
Summary:
I just bumped the minimum compiler versions to support C++14 in D66188.

Following [our process](http://llvm.org/docs/DeveloperPolicy.html#toolchain) and [our previous agreement](http://lists.llvm.org/pipermail/llvm-dev/2019-January/129452.html), I'm now officially bumping the C++ version to 14 and updating the documentation.

Subscribers: mgorny, jkorous, dexonsmith, llvm-commits, chandlerc, thakis, EricWF, jyknight, lhames, JDevlieghere

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66195

llvm-svn: 368887
2019-08-14 17:39:07 +00:00
Craig Topper ffe91994a9 [LangRef] Remove opening [ that was missing a closing ] from call/callbr/invoke syntax.
It looks like this bracket was added when the addrspace was added.
before it. So I think it can jut be removed.

llvm-svn: 368861
2019-08-14 15:10:37 +00:00
JF Bastien 20644a9540 Remove minimum toolchain soft-error
Summary:
Back in January I changed the minimum toolchain version required to build clang
and LLVM: D57264. Since then we've release LLVM 8, following
[our process](http://llvm.org/docs/DeveloperPolicy.html#toolchain)
it's therefore now a good time to remove the soft-error and officially deprecate
older toolchains. I tried this out last Tursday night to see if any bots
complained, and I saw no complaints. I also manually audited bots and didn't see
any bot that should break, but their toolchain information is unreliable and
some bots are offline.

Once this patch stick we'll move to C++14 as we've
[already agreed](http://lists.llvm.org/pipermail/llvm-dev/2019-January/129452.html).

Subscribers: mgorny, jkorous, dexonsmith, llvm-commits, EricWF, thakis, chandlerc

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66188

llvm-svn: 368799
2019-08-14 04:30:51 +00:00
John McCall 94010b2b7f Extend coroutines to support a "returned continuation" lowering.
A quick contrast of this ABI with the currently-implemented ABI:

- Allocation is implicitly managed by the lowering passes, which is fine
  for frontends that are fine with assuming that allocation cannot fail.
  This assumption is necessary to implement dynamic allocas anyway.

- The lowering attempts to fit the coroutine frame into an opaque,
  statically-sized buffer before falling back on allocation; the same
  buffer must be provided to every resume point.  A buffer must be at
  least pointer-sized.

- The resume and destroy functions have been combined; the continuation
  function takes a parameter indicating whether it has succeeded.

- Conversely, every suspend point begins its own continuation function.

- The continuation function pointer is directly returned to the caller
  instead of being stored in the frame.  The continuation can therefore
  directly destroy the frame when exiting the coroutine instead of having
  to leave it in a defunct state.

- Other values can be returned directly to the caller instead of going
  through a promise allocation.  The frontend provides a "prototype"
  function declaration from which the type, calling convention, and
  attributes of the continuation functions are taken.

- On the caller side, the frontend can generate natural IR that directly
  uses the continuation functions as long as it prevents IPO with the
  coroutine until lowering has happened.  In combination with the point
  above, the frontend is almost totally in charge of the ABI of the
  coroutine.

- Unique-yield coroutines are given some special treatment.

llvm-svn: 368788
2019-08-14 03:53:17 +00:00
Diego Trevino Ferrer 72f996e4d9 [Bugpoint redesign] Fix nonlocal URI link in doc
Summary: Fixes documentation bot build  http://lab.llvm.org:8011/builders/llvm-sphinx-docs

Reviewers: JDevlieghere

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66022

llvm-svn: 368493
2019-08-09 21:48:47 +00:00
Michael Pozulp 3de981313c [Docs][llvm-strip] Fix an indentation issue.
llvm-svn: 368473
2019-08-09 19:41:13 +00:00
Michael Pozulp 4fe911d9dd [Docs][llvm-strip] Add help text to llvm-strip rst doc
Summary: Addresses https://bugs.llvm.org/show_bug.cgi?id=42383

Reviewers: jhenderson, alexshap, rupprecht

Reviewed By: jhenderson

Subscribers: wolfgangp, jakehehrlich, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65384

llvm-svn: 368464
2019-08-09 19:10:55 +00:00
Andrea Di Biagio cbec9af6bf [MCA] Add flag -show-encoding to llvm-mca.
Flag -show-encoding enables the printing of instruction encodings as part of the
the instruction info view.

Example (with flags -mtriple=x86_64--  -mcpu=btver2):

Instruction Info:
[1]: #uOps
[2]: Latency
[3]: RThroughput
[4]: MayLoad
[5]: MayStore
[6]: HasSideEffects (U)
[7]: Encoding Size

[1]    [2]    [3]    [4]    [5]    [6]    [7]    Encodings:     Instructions:
 1      2     1.00                         4     c5 f0 59 d0    vmulps   %xmm0, %xmm1, %xmm2
 1      4     1.00                         4     c5 eb 7c da    vhaddps  %xmm2, %xmm2, %xmm3
 1      4     1.00                         4     c5 e3 7c e3    vhaddps  %xmm3, %xmm3, %xmm4

In this example, column Encoding Size is the size in bytes of the instruction
encoding. Column Encodings reports the actual instruction encodings as byte
sequences in hex (objdump style).

The computation of encodings is done by a utility class named mca::CodeEmitter.

In future, I plan to expose the CodeEmitter to the instruction builder, so that
information about instruction encoding sizes can be used by the simulator. That
would be a first step towards simulating the throughput from the decoders in the
hardware frontend.

Differential Revision: https://reviews.llvm.org/D65948

llvm-svn: 368432
2019-08-09 11:26:27 +00:00
Diego Trevino Ferrer ddc64eb948 Added Delta IR Reduction Tool
Summary: Tool parses input IR file, and runs the delta debugging algorithm to reduce the functions inside the input file.

Reviewers: alexshap, chandlerc

Subscribers: mgorny, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63672

> llvm-svn: 368071

llvm-svn: 368358
2019-08-08 22:16:33 +00:00
Daniel Sanders 5b40eb0572 [globalisel][legalizer] Attempt to write down the minimal legalization rules
Summary:
There aren't very many requirements on the legalization rules but we should
document them.

Reviewers: aditya_nandakumar, volkan, bogner, paquette, aemerson, rovka, arsenm, Petar.Avramovic

Subscribers: wdng, kristof.beyls, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62423

# Conflicts:
#	llvm/docs/GlobalISel.rst

llvm-svn: 368321
2019-08-08 17:54:23 +00:00
Tim Corringham 4f64f1ba3c Add llvm.licm.disable metadata
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.

Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.

Differential Revision: https://reviews.llvm.org/D64557

llvm-svn: 368296
2019-08-08 13:46:17 +00:00
Anusha Basana a87f856f2d [llvm-lipo] Update llvm-lipo docs for -info -thin -create -replace -segalign flags
Summary:
The information for -info -thin -create -replace and -segalign flags are added to llvm-lipo.rst

Test Plan:

Reviewers: smeenai, alexshap, compnerd, mtrent

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65676

llvm-svn: 368235
2019-08-07 23:25:12 +00:00
Diego Trevino Ferrer d4d00ae6a2 Revert Added Delta IR Reduction Tool
This reverts r368071 (git commit a2584978f5bb41973d65a145b0d9459b81e3ac6d)

llvm-svn: 368217
2019-08-07 21:51:54 +00:00
Diego Trevino Ferrer b80c4c82d6 Added Delta IR Reduction Tool
Summary: Tool parses input IR file, and runs the delta debugging algorithm to reduce the functions inside the input file.

Reviewers: alexshap, chandlerc

Subscribers: mgorny, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63672

> llvm-svn: 368071

llvm-svn: 368214
2019-08-07 21:37:11 +00:00
Sam Elliott 4f6737565b [RISCV][NFC] Document RISC-V-specific assembly constraints
llvm-svn: 368167
2019-08-07 13:08:07 +00:00
Petr Hosek 989679c371 Reverts commit r368117, r368115 and r368112
This reverts commits:

  "Added Delta IR Reduction Tool"
  "[Bugpoint redesign] Added Pass to Remove Global Variables"
  "Added Tool as Dependency to tests & fixed warnings"

Reduce/remove-funcs.ll is failing on bots.

llvm-svn: 368122
2019-08-07 05:15:34 +00:00
Diego Trevino Ferrer 099e5c5bba Added Delta IR Reduction Tool
Summary: Tool parses input IR file, and runs the delta debugging algorithm to reduce the functions inside the input file.

Reviewers: alexshap, chandlerc

Subscribers: mgorny, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63672

> llvm-svn: 368071

llvm-svn: 368112
2019-08-07 00:00:52 +00:00
Dmitri Gribenko e2f17e2649 Revert "Added Delta IR Reduction Tool"
This reverts commit r368071, it broke buildbots.

llvm-svn: 368073
2019-08-06 19:40:37 +00:00
Diego Trevino Ferrer 800618f241 Added Delta IR Reduction Tool
Summary: Tool parses input IR file, and runs the delta debugging algorithm to reduce the functions inside the input file.

Reviewers: alexshap, chandlerc

Subscribers: mgorny, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63672

llvm-svn: 368071
2019-08-06 18:59:11 +00:00
Hans Wennborg dba4dd1e8d Revert r367941 "Add a note to the release not about a potentially breaking optimization"
The note was moved to the release_90 branch in r367997.

llvm-svn: 367998
2019-08-06 08:32:33 +00:00
Johannes Doerfert e83f303938 [Attributor] Deduce the "no-return" attribute for functions
A function is "no-return" if we never reach a return instruction, either
because there are none or the ones that exist are dead.

Test have been adjusted:
  - either noreturn was added, or
  - noreturn was avoided by modifying the code.

The new noreturn_{sync,async} test make sure we do handle invoke
instructions with a noreturn (and potentially nowunwind) callee
correctly, even in the presence of potential asynchronous exceptions.

llvm-svn: 367948
2019-08-05 23:22:05 +00:00
Wolfgang Pieb c71c629926 [llvm-readelf] Support dumping of stack sizes sections with readelf --stack-sizes
Reviewers: jhenderson, grimar, rupprecht

Differential Revision: https://reviews.llvm.org/D65313

llvm-svn: 367942
2019-08-05 22:47:07 +00:00
Philip Reames e39e79358f Add a note to the release not about a potentially breaking optimization
This has come up twice already (once in pr42763 and once in the commit thread), so give warning of a new way in which UB can result in unexpected program behavior.

llvm-svn: 367941
2019-08-05 22:34:59 +00:00
Andrea Di Biagio 225655f82c [MCA][doc] Add a section for the 'Bottleneck Analysis'.
Also clarify the meaning of 'Block RThroughput' and 'RThroughput'.

llvm-svn: 367853
2019-08-05 13:18:37 +00:00
Fangrui Song d9b948b6eb Rename F_{None,Text,Append} to OF_{None,Text,Append}. NFC
F_{None,Text,Append} are kept for compatibility since r334221.

llvm-svn: 367800
2019-08-05 05:43:48 +00:00
Tim Northover a009a60a91 IR: print value numbers for unnamed function arguments
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.

Also modifies the parser to accept IR in that form for obvious reasons.

llvm-svn: 367755
2019-08-03 14:28:34 +00:00
Yonghong Song d0ea05d5ef [BPF] annotate DIType metadata for builtin preseve_array_access_index()
Previously, debuginfo types are annotated to
IR builtin preserve_struct_access_index() and
preserve_union_access_index(), but not
preserve_array_access_index(). The debug info
is useful to identify the root type name which
later will be used for type comparison.

For user access without explicit type conversions,
the previous scheme works as we can ignore intermediate
compiler generated type conversions (e.g., from union types to
union members) and still generate correct access index string.

The issue comes with user explicit type conversions, e.g.,
converting an array to a structure like below:
  struct t { int a; char b[40]; };
  struct p { int c; int d; };
  struct t *var = ...;
  ... __builtin_preserve_access_index(&(((struct p *)&(var->b[0]))->d)) ...
Although BPF backend can derive the type of &(var->b[0]),
explicit type annotation make checking more consistent
and less error prone.

Another benefit is for multiple dimension array handling.
For example,
  struct p { int c; int d; } g[8][9][10];
  ... __builtin_preserve_access_index(&g[2][3][4].d) ...
It would be possible to calculate the number of "struct p"'s
before accessing its member "d" if array debug info is
available as it contains each dimension range.

This patch enables to annotate IR builtin preserve_array_access_index()
with proper debuginfo type. The unit test case and language reference
is updated as well.

Signed-off-by: Yonghong Song <yhs@fb.com>

Differential Revision: https://reviews.llvm.org/D65664

llvm-svn: 367724
2019-08-02 21:28:28 +00:00
Paul Robinson 89683e9dd7 [doc] Give a workaround for a FileCheck regex that ends in a brace.
Addresses PR42864.

llvm-svn: 367689
2019-08-02 16:07:48 +00:00
Lang Hames 809e9d1efa [ORC] Change the locking scheme for ThreadSafeModule.
ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking
for LLVMContexts in ORCv2. Prior to this patch contexts were locked as soon
as an associated Module was emitted (to be compiled and linked), and were not
unlocked until the emit call returned. This could lead to deadlocks if
interdependent modules that shared contexts were compiled on different threads:
when, during emission of the first module, the dependence was discovered the
second module (which would provide the required symbol) could not be emitted as
the thread emitting the first module still held the lock.

This patch eliminates this possibility by moving to a finer-grained locking
scheme. Each client holds the module lock only while they are actively operating
on it. To make this finer grained locking simpler/safer to implement this patch
removes the explicit lock method, 'getContextLock', from ThreadSafeModule and
replaces it with a new method, 'withModuleDo', that implicitly locks the context,
calls a user-supplied function object to operate on the Module, then implicitly
unlocks the context before returning the result.

ThreadSafeModule TSM = getModule(...);
size_t NumFunctions = TSM.withModuleDo(
    [](Module &M) { // <- context locked before entry to lambda.
      return M.size();
    });

Existing ORCv2 layers that operate on ThreadSafeModules are updated to use the
new method.

This method is used to introduce Module locking into each of the existing
layers.

llvm-svn: 367686
2019-08-02 15:21:37 +00:00
Andrea Di Biagio 207e3af501 [MCA] Add support for printing immedate values as hex. Also enable lexing of masm binary and hex literals.
This patch adds a new llvm-mca flag named -print-imm-hex.

By default, the instruction printer prints immediate operands as decimals. Flag
-print-imm-hex enables the instruction printer to print those operands in hex.

This patch also adds support for MASM binary and hex literal numbers (example
0FFh, 101b).
Added tests to verify the behavior of the new flag. Tests also verify that masm
numeric literal operands are now recognized.

Differential Revision: https://reviews.llvm.org/D65588

llvm-svn: 367671
2019-08-02 10:38:25 +00:00