Commit Graph

6 Commits

Author SHA1 Message Date
Fangrui Song 71e2ca6e32 [llvm-objdump] -d: print `00000000 <foo>:` instead of `00000000 foo:`
The new behavior matches GNU objdump. A pair of angle brackets makes tests slightly easier.

`.foo:` is not unique and thus cannot be used in a `CHECK-LABEL:` directive.
Without `-LABEL`, the CHECK line can match the `Disassembly of section`
line and causes the next `CHECK-NEXT:` to fail.

```
Disassembly of section .foo:

0000000000001634 .foo:
```

Bdragon: <> has metalinguistic connotation. it just "feels right"

Reviewed By: rupprecht

Differential Revision: https://reviews.llvm.org/D75713
2020-03-05 18:05:28 -08:00
Martin Storsjo a0cbe16ed5 [COFF] Omit automatically imported symbols from the symbol table
These symbols actually point to the symbol's IAT entry, which
obviously is different from the symbol itself (which is imported
from a different module and doesn't exist in the current one).

Omitting this symbol helps gdb inspect automatically imported
symbols, see https://sourceware.org/bugzilla/show_bug.cgi?id=24574
for discussion on the matter.

Surprisingly, those extra symbols don't seem to be an issue for
gdb when the sources have been built with clang, only with gcc.
The actual logic in gdb that this depends on still is unknown, but
omitting these symbols from the symbol table is the right thing to
do in any case.

Differential Revision: https://reviews.llvm.org/D65727

llvm-svn: 367836
2019-08-05 11:57:00 +00:00
Fangrui Song 5387c2cd17 [llvm-objdump] Print newlines before and after "Disassembly of section ...:"
This improves readability and the behavior is consistent with GNU objdump.

The new test test/tools/llvm-objdump/X86/disassemble-section-name.s
checks we print newlines before and after "Disassembly of section ...:"

Differential Revision: https://reviews.llvm.org/D61127

llvm-svn: 359668
2019-05-01 10:40:48 +00:00
Fangrui Song b159906a9a [test] Change llvm-readobj -long-option to --long-option or well-known short options. NFC
Also change some options that have different semantics (cause confusion) in llvm-readelf mode:

-s => -S
-t => --symbols
-sd => --section-data

llvm-svn: 359651
2019-05-01 05:49:01 +00:00
Martin Storsjo 7a41693898 [COFF] Provide __CTOR_LIST__ and __DTOR_LIST__ symbols for MinGW
MinGW uses these kind of list terminator symbols for traversing
the constructor/destructor lists. These list terminators are
actual pointers entries in the lists, with the values 0 and
(uintptr_t)-1 (instead of just symbols pointing to the start/end
of the list).

(This mechanism exists in both the mingw-w64 crt startup code and
in libgcc; normally the mingw-w64 one is used, but a DLL build of
libgcc uses the libgcc one. Therefore it's not trivial to change
the mechanism without lots of cross-project synchronization and
potentially invalidating some combinations of old/new versions
of them.)

When mingw-w64 has been used with lld so far, the CRT startup object
files have so far provided these symbols, ending up with different,
incompatible builds of the CRT startup object files depending on
whether binutils or lld are going to be used.

In order to avoid the need of different configuration of the CRT startup
object files depending on what linker to be used, provide these symbols
in lld instead. (Mingw-w64 checks at build time whether the linker
provides these symbols or not.) This unifies this particular detail
between the two linkers.

This does disallow the use of the very latest lld with older versions
of mingw-w64 (the configure check for the list was added recently;
earlier it simply checked whether the CRT was built with gcc or clang),
and requires rebuilding the mingw-w64 CRT. But the number of users of
lld+mingw still is low enough that such a change should be tolerable,
and unifies this aspect of the toolchains, easing interoperability
between the toolchains for the future.

The actual test for this feature is added in ctors_dtors_priority.s,
but a number of other tests that checked absolute output addresses
are updated.

Differential Revision: https://reviews.llvm.org/D52053

llvm-svn: 342294
2018-09-14 22:26:59 +00:00
Martin Storsjo eac1b05f1d [COFF] Support MinGW automatic dllimport of data
Normally, in order to reference exported data symbols from a different
DLL, the declarations need to have the dllimport attribute, in order to
use the __imp_<var> symbol (which contains an address to the actual
variable) instead of the variable itself directly. This isn't an issue
in the same way for functions, since any reference to the function without
the dllimport attribute will end up as a reference to a thunk which loads
the actual target function from the import address table (IAT).

GNU ld, in MinGW environments, supports automatically importing data
symbols from DLLs, even if the references didn't have the appropriate
dllimport attribute. Since the PE/COFF format doesn't support the kind
of relocations that this would require, the MinGW's CRT startup code
has an custom framework of their own for manually fixing the missing
relocations once module is loaded and the target addresses in the IAT
are known.

For this to work, the linker (originall in GNU ld) creates a list of
remaining references needing fixup, which the runtime processes on
startup before handing over control to user code.

While this feature is rather controversial, it's one of the main features
allowing unix style libraries to be used on windows without any extra
porting effort.

Some sort of automatic fixing of data imports is also necessary for the
itanium C++ ABI on windows (as clang implements it right now) for importing
vtable pointers in certain cases, see D43184 for some discussion on that.

The runtime pseudo relocation handler supports 8/16/32/64 bit addresses,
either PC relative references (like IMAGE_REL_*_REL32*) or absolute
references (IMAGE_REL_AMD64_ADDR32, IMAGE_REL_AMD64_ADDR32,
IMAGE_REL_I386_DIR32). On linking, the relocation is handled as a
relocation against the corresponding IAT slot. For the absolute references,
a normal base relocation is created, to update the embedded address
in case the image is loaded at a different address.

The list of runtime pseudo relocations contains the RVA of the
imported symbol (the IAT slot), the RVA of the location the relocation
should be applied to, and a size of the memory location. When the
relocations are fixed at runtime, the difference between the actual
IAT slot value and the IAT slot address is added to the reference,
doing the right thing for both absolute and relative references.

With this patch alone, things work fine for i386 binaries, and mostly
for x86_64 binaries, with feature parity with GNU ld. Despite this,
there are a few gotchas:
- References to data from within code works fine on both x86 architectures,
  since their relocations consist of plain 32 or 64 bit absolute/relative
  references. On ARM and AArch64, references to data doesn't consist of
  a plain 32 or 64 bit embedded address or offset in the code. On ARMNT,
  it's usually a MOVW+MOVT instruction pair represented by a
  IMAGE_REL_ARM_MOV32T relocation, each instruction containing 16 bit of
  the target address), on AArch64, it's usually an ADRP+ADD/LDR/STR
  instruction pair with an even more complex encoding, storing a PC
  relative address (with a range of +/- 4 GB). This could theoretically
  be remedied by extending the runtime pseudo relocation handler with new
  relocation types, to support these instruction encodings. This isn't an
  issue for GCC/GNU ld since they don't support windows on ARMNT/AArch64.
- For x86_64, if references in code are encoded as 32 bit PC relative
  offsets, the runtime relocation will fail if the target turns out to be
  out of range for a 32 bit offset.
- Fixing up the relocations at runtime requires making sections writable
  if necessary, with the VirtualProtect function. In Windows Store/UWP apps,
  this function is forbidden.

These limitations are addressed by a few later patches in lld and
llvm.

Differential Revision: https://reviews.llvm.org/D50917

llvm-svn: 340726
2018-08-27 08:43:31 +00:00