Enable use of ExecutionEngine JITEventListeners in RTDyldObjectLinkingLayer.
This allows existing MCJIT clients to more easily migrate to LLJIT / ORCv2.
Example usage in llvm/examples/OrcV2Examples/LLJITWithGDBRegistrationListener.
Differential Revision: https://reviews.llvm.org/D75838
This patch adds 'q' to mean 'scalable vector' in the builtin
type string, and for SVE will return the matching builtin
type as defined in the C/C++ language extensions for SVE.
This patch also adds some scaffolding to generate the arm_sve.h
header file, and some builtin definitions (+CodeGen) to be able
to implement some simple masked load intrinsics that use the
ACLE types, such as:
svint8_t test_svld1_s8(svbool_t pg, const int8_t *base) {
return svld1_s8(pg, base);
}
Reviewers: efriedma, rjmccall, rovka, rsandifo-arm, rengolin
Reviewed By: efriedma
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75298
This patch removes compiler runtime assertions that ensure the implicit
conversion are only guaranteed to work for fixed-width vectors.
With the assert it would be impossible to get _anything_ to build until
the
entire codebase has been upgraded, even when the indiscriminate uses of
the size as uint64_t would work fine for both scalable and fixed-width
types.
This issue will need to be addressed differently, with build-time errors
rather than assertion failures, but that effort falls beyond the scope
of this patch.
Returning the scalable size and avoiding the assert in getFixedSize()
is a temporary stop-gap in order to use LLVM for compiling and using
the SVE ACLE intrinsics.
Reviewers: efriedma, huntergr, rovka, ctetreau, rengolin
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75297
Followup to D75114, this patch reuses the existing MatchRotate ROTL/ROTR rotation pattern code to also recognize the more general FSHL/FSHR funnel shift patterns when we have variable shift amounts, matched with MatchFunnelPosNeg which acts in an (almost) equivalent manner to MatchRotatePosNeg.
This patch adds a new singlecrfromundef lattice value, indicating a
single element constant range which was merge with undef at some point.
Merging it with another constant range results in overdefined, as we
won't be able to replace all users with a single value.
This patch uses a ConstantRange instead of a Constant*, because regular
integer constants are represented as single element constant ranges as
well and this allows the existing code working without additional
changes.
Reviewers: efriedma, nikic, reames, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D75845
Summary: This generates the class declarations for dialects using the existing 'Dialect' tablegen classes.
Differential Revision: https://reviews.llvm.org/D76185
Summary:
This is a simple fix for CodeGenPrepare that freezes branch condition when transforming select to branch.
If it is not freezed, instsimplify or the later pipeline can potentially exploit undefined behavior.
The diff shows optimized form becase D75859 and D76048 already made a few changes to CodeGenPrepare for optimizing freeze(cmp).
Reviewers: jdoerfert, spatel, lebedev.ri, efriedma
Reviewed By: lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76179
Global symbols with linker-private prefixes should be resolvable across object
boundaries, but internal symbols with linker-private prefixes should not.
This is the first in a series of patches to enable Basic Block Sections
in LLVM.
We introduce a new compiler option, -fbasicblock-sections=, which places every
basic block in a unique ELF text section in the object file along with a
symbol labeling the basic block. The linker can then order the basic block
sections in any arbitrary sequence which when done correctly can encapsulate
block layout, function layout and function splitting optimizations. However,
there are a couple of challenges to be addressed for this to be feasible:
1) The compiler must not allow any implicit fall-through between any two
adjacent basic blocks as they could be reordered at link time to be
non-adjacent. In other words, the compiler must make a fall-through
between adjacent basic blocks explicit by retaining the direct jump
instruction that jumps to the next basic block. These branches can only
be removed later by the linker after the blocks have been reordered.
2) All inter-basic block branch targets would now need to be resolved by
the linker as they cannot be calculated during compile time. This is
done using static relocations which bloats the size of the object files.
Further, the compiler tries to use short branch instructions on some ISAs
for branch offsets that can be accommodated in one byte. This is not
possible with basic block sections as the offset is not determined at
compile time, and long branch instructions have to be used everywhere.
3) Each additional section bloats object file sizes by tens of bytes. The
number of basic blocks can be potentially very large compared to the
size of functions and can bloat object sizes significantly. Option
fbasicblock-sections= also takes a file path which can be used to
specify a subset of basic blocks that needs unique sections to keep
the bloats small.
4) Debug Info and CFI need special handling and will be presented as
separate patches.
Basic Block Labels
With -fbasicblock-sections=labels, or when a basic block is placed in a
unique section, it is labelled with a symbol. This allows easy mapping of
virtual addresses from PMU profiles back to the corresponding basic blocks.
Since the number of basic blocks is large, the labeling bloats the symbol
table sizes and the string table sizes significantly. While the binary size
does increase, it does not affect performance as the symbol table is not
loaded in memory during run-time. The string table size bloat is kept very
minimal using a unary naming scheme that uses string suffix compression.
The basic blocks for function foo are named "a.BB.foo", "aa.BB.foo", ...
This turns out to be very good for string table sizes and the bloat in the
string table size for a very large binary is ~8 %. The naming also allows
using the --symbol-ordering-file option in LLD to arbitrarily reorder the
sections.
Differential Revision: https://reviews.llvm.org/D68063
Gives us coverage of splitting the v32i16/v64i8 when we have
avx512f and not avx512bw.
Considering making v32i16/v64i8 a legal type on avx512f which
needs this test coverage.
Renames the llvm/examples/LLJITExamples directory to llvm/examples/OrcV2Examples
since it is becoming a home for all OrcV2 examples, not just LLJIT.
See http://llvm.org/PR31103.
The name field is optional if the custom code is supplied, so this updates the
documentation for LangOpt and introduces a tablegen warning if both custom code
and a language option name are supplied.
Setting MLIR_TABLEGEN_EXE would prevent building the native tool which is used in cross-compiling
Differential Revision: https://reviews.llvm.org/D75299