SPIR-V ops can mix operands and attributes in the definition. These
operands and attributes are serialized in the exact order of the definition
to match SPIR-V binary format requirements. It can cause excessive
generated code bloat because we are emitting code to handle each
operand/attribute separately. So here we probe first to check whether all
the operands are ahead of attributes. Then we can serialize all operands
together.
This removes ~1000 lines of code from the generated inc file.
Differential Revision: https://reviews.llvm.org/D79446
These template functions are used in the serializer, where we can
actually directly query the opcode from the op's definition and
use that in the auto-generated serialization logic.
This removes a set of templates accounting for 319 lines from
the auto-generated inc file.
Differential Revision: https://reviews.llvm.org/D79444
We rely on the combine
(sext_in_reg (v4i64 a/sext (v4i32 x)), v4i1) -> (v4i64 sext (v4i32 sext_in_reg (v4i32 x, ExtraVT)))
to avoid complex v4i64 ashr codegen, but doing so prevents v4i64 comparison mask promotion, so ensure we attempt to promote before canonicalizing the (hopefully now redundant sext_in_reg).
Helps with the poor codegen in PR45808.
Summary:
When forking in several threads, the counters were written out in using the same global static variables (see GCDAProfiling.c): that leads to crashes.
So when there is a fork, the counters are resetted in the child process and they will be dumped at exit using the interprocess file locking.
When there is an exec, the counters are written out and in case of failures they're resetted.
Reviewers: jfb, vsk, marco-c, serge-sans-paille
Reviewed By: marco-c, serge-sans-paille
Subscribers: llvm-commits, serge-sans-paille, dmajor, cfe-commits, hiraditya, dexonsmith, #sanitizers, marco-c, sylvestre.ledru
Tags: #sanitizers, #clang, #llvm
Differential Revision: https://reviews.llvm.org/D78477
Enables the MVEGatherScatterLowering pass to build
pre-incrementing gathers. Incrementing writeback gathers
are built when it is possible to replace the loop increment
instruction.
Differential Revision: https://reviews.llvm.org/D76786
Summary:
Correct instruction bitfield addresses to generate machine code correctly. Also
add some variables to represent all instructions correctly and change default
values to use registers by default.
Differential Revision: https://reviews.llvm.org/D79539
Summary:
Conflicting types for the same section name defined in clang section
pragmas and GNU-style section attributes were not properly captured by
Clang's Sema. The lack of diagnostics was caused by the fact the section
specification coming from attributes was handled by Sema as implicit,
even though explicitly defined by the user.
This patch enables the diagnostics for section type conflicts between
those specifications by making sure sections defined in section
attributes are correctly handled as explicit.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78573
Summary:
Section names used in clang section pragmas were not validated against
previously defined sections, causing section type conflicts to be
ignored by Sema.
This patch enables Clang to capture these section type conflicts by
using the existing Sema's UnifySection method to validate section names
from clang section pragmas.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78572
Summary:
We used getEnclosingNamespaceContext(), which calls getParent() rather
than getLexicalParent(), so we would end up adding the "using" line in
places that do not affect the cursor location, or just return an error
when declaration was in another file.
Patch by Adam Czachorowski!
Reviewers: hokein
Reviewed By: hokein
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79496
Originally, these operations were folded only if all expressions in their
affine maps could be folded to a constant expression that can be then subject
to numeric min/max computation. This introduces a more advanced version that
partially folds the affine map by lifting individual constant expression in it
even if some of the expressions remain variable. The folding can update the
operation in place to use a simpler map. Note that this is not as powerful as
canonicalization, in particular this does not remove dimensions or symbols that
became useless. This allows for better composition of Linalg tiling and
promotion transformation, where the latter can handle some canonical forms of
affine.min that the folding can now produce.
Differential Revision: https://reviews.llvm.org/D79502
In the Vector to LLVM conversion, the `replaceTransferOp` function calls
into a type converter that may fail and suppresses the status. Change
the function to return the failure status instead, Since it is called
from a pattern, the failure can be readily propagated to the rest of
infrastructure.
Summary:
This patch handles illegal scalable types when lowering IR operations,
addressing several places where the value of isScalableVector() is
ignored.
For types such as <vscale x 8 x i32>, this means splitting the
operations. In this example, we would split it into two
operations of type <vscale x 4 x i32> for the low and high halves.
In cases such as <vscale x 2 x i32>, the elements in the vector
will be promoted. In this case they will be promoted to
i64 (with a vector of type <vscale x 2 x i64>)
Reviewers: sdesmalen, efriedma, huntergr
Reviewed By: efriedma
Subscribers: david-arm, tschuett, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78812
Splitting critical edges for indirect branches
the SplitIndirectBrCriticalEdges() function may break branch
probabilities if target basic block happens to have unset
a probability for any of its successors. That is because in
such cases the getEdgeProbability(Target) function returns
probability 1/NumOfSuccessors and it is called after Target
was split (thus Target has a single successor). As the result
the correspondent successor of the split block gets
probability 100% but 1/NumOfSuccessors is expected (or better
be left unset).
Reviewers: yamauchi
Differential Revision: https://reviews.llvm.org/D78806
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Differential Revision: https://reviews.llvm.org/D78911
When calculating the natural alignment for scalable vectors it
is acceptable to calculate an allocation size based on the minimum
number of elements in the vector.
This code path is exercised by an existing test:
CodeGen/AArch64/sve-intrinsics-int-arith.ll
Differential Revision: https://reviews.llvm.org/D79475
The list of destination load ops while evaluating producer-consumer
fusion wasn't being maintained as a set, and as such, duplicate load ops
were being added to it. Although this is harmless correctness-wise, it's
a killer efficiency-wise and it prevents interesting/useful fusions
(including for eg. reshapes into a matmul). The reason the latter
fusions would be missed is that a slice union would be unnecessarily
needed due to the duplicate load ops on a memref added to the 'dst
loads' list. Since slice union is unimplemented for the local var case,
a single destination load op that leads to local vars (like a floordiv /
mod producing fusion), a common case, would not get fused due to an
unnecessary union being tried with itself. (The union would actually be
the same thing but we would bail out.)
Besides the above, this would also significantly speed up fusion as all
the unnecessary slice computations / unions, checks, etc. due to the
duplicates go away.
Differential Revision: https://reviews.llvm.org/D79547