Also restrict to port 0 and 1 for SkylakeClient. It looks like the scheduler models don't account for client not having a full vector ALU on port 5 like server.
Fixes PR36808.
llvm-svn: 328061
The default thread model for wasm is single, and in this mode thread-local
global variables can be lowered identically to non-thread-local variables.
Differential Revision: https://reviews.llvm.org/D44703
llvm-svn: 328049
Mingw uses the same stack protector functions as GCC provides
on other platforms as well.
Patch by Valentin Churavy!
Differential Revision: https://reviews.llvm.org/D27296
llvm-svn: 328039
It uses the MC framework and the tablegen matcher to do the
heavy lifting. Can handle both explicit and implicit locals
(-disable-wasm-explicit-locals). Comes with a small regression
test.
This is a first basic implementation that can parse most llvm .s
output and round-trips most instructions succesfully, but in order
to keep the commit small, does not address all issues.
There are a fair number of mismatches between what MC / assembly
matcher think a "CPU" should look like and what WASM provides,
some already have workarounds in this commit (e.g. the way it
deals with register operands) and some that require further work.
Some of that further work may involve changing what the
Disassembler outputs (and what s2wasm parses), so are probably
best left to followups.
Some known things missing:
- Many directives are ignored and not emitted.
- Vararg calls are parsed but extra args not emitted.
- Loop signatures are likely incorrect.
- $drop= is not emitted.
- Disassembler does not output SIMD types correctly, so assembler
can't test them.
Patch by Wouter van Oortmerssen
Differential Revision: https://reviews.llvm.org/D44329
llvm-svn: 328028
I'm not entirely sure these hacks are still needed. If you remove the hacks completely, the name of the library call that gets generated doesn't match the grep the test previously had. So the test wasn't really checking anything.
If the hack is still needed it belongs in PPC specific code. I believe the FP_TO_SINT code here is the only place in the tree where a FP_ROUND_INREG node is created today. And I don't think its even being used correctly because the legalization returned a BUILD_PAIR with the same value twice. That doesn't seem right to me. By moving the code entirely to PPC we can avoid creating the FP_ROUND_INREG at all.
I replaced the grep in the existing test with full checks generated by hacking update_llc_test_check.py to support ppc32 just long enough to generate it.
Differential Revision: https://reviews.llvm.org/D44061
llvm-svn: 328017
Registers E[A-D]X, E[SD]I, E[BS]P, and EIP have 16-bit subregisters
that cover the low halves of these registers. This change adds artificial
subregisters for the high halves in order to differentiate (in terms of
register units) between the 32- and the low 16-bit registers.
This patch contains parts that aim to preserve the calculated register
pressure. This is in order to preserve the current codegen (minimize the
impact of this patch). The approach of having artificial subregisters
could be used to fix PR23423, but the pressure calculation would need
to be changed.
Differential Revision: https://reviews.llvm.org/D43353
llvm-svn: 328016
This way we can support address-space specific variants without explicitly
encoding the space in the name of the intrinsic. Less intrinsics to deal with ->
less boilerplate.
Added a bit of tablegen magic to match/replace an intrinsics with a pointer
argument in particular address space with the space-specific instruction
variant.
Updated tests to use non-default address spaces.
Differential Revision: https://reviews.llvm.org/D43268
llvm-svn: 328006
TopReadyCycle and BotReadyCycle were off by one cycle when an SU is either
the first instruction or the last instruction in a packet.
Patch by Ikhlas Ajbar.
llvm-svn: 328000
This patch changes the isLatencyBound heuristic to look at the
path length based upon the number of packets needed to schedule
a basic block. For small basic blocks, the heuristic uses a small
threshold for isLatencyBound. For large basic blocks, the
heuristic uses a large threshold.
The goal is to increase the priority of an instruction in a small
basic block that has a large height or depth relative to the code
size. For large functions, the height and depth are ignored
because it increases the live range of a register and causes more
spills. That is, for large functions, it is more important to
schedule instructions when available, and attempt to keep the defs
and uses closer together.
Patch by Brendon Cahoon.
llvm-svn: 327987
In these cases, both parameters and return values are passed
as a pointer to a stack allocation.
MSVC doesn't use the f80 data type at all, while it is used
for long doubles on mingw.
Normally, this part of the calling convention is handled
within clang, but for intrinsics that are lowered to libcalls,
it may need to be handled within llvm as well.
Differential Revision: https://reviews.llvm.org/D44592
llvm-svn: 327957
They were incorrectly marked as RMW operations. Some of the CMP instrucions worked, but the ones that use a similar encoding as RMW form of ADD ended up marked as RMW.
TEST used the same tablegen class as some of the CMPs.
llvm-svn: 327947
E.g.
bar (int x)
{
char p[x];
push outgoing variables for foo.
call foo
}
We need to generate stack adjustment instructions for outgoing arguments by
eliminateCallFramePseudoInstr when the function contains variable size
objects to avoid outgoing variables corrupt the variable size object.
Default hasReservedCallFrame will return !hasFP().
We don't want to generate extra sp adjustment instructions when hasFP()
return true, So We override hasReservedCallFrame as !hasVarSizedObjects().
Differential Revision: https://reviews.llvm.org/D43752
llvm-svn: 327938
When outlining calls, the outliner needs to update CFI to ensure that, say,
exception handling works. This commit adds that functionality and adds a test
just for call outlining.
Call outlining stuff in machine-outliner.mir should be moved into
machine-outliner-calls.mir in a later commit.
llvm-svn: 327917
We don't need to create an ISD::TRUNCATE node to return, we started with one and can return it. Also remove the call to getExtendInVec, the result is just going to be a getNode of that value passed in.
llvm-svn: 327914
This extends the use of this attribute on ARM and AArch64 from
SVN r325900 (where it was only checked for fixed stack
allocations on ARM/AArch64, but for all stack allocations on X86).
This also adds a testcase for the existing use of disabling the
fixed stack probe with the attribute on ARM and AArch64.
Differential Revision: https://reviews.llvm.org/D44291
llvm-svn: 327897
PR35590 was already filed for this information being wrong. It's probably better to default to WriteSystem behavior instead of using something completely wrong.
llvm-svn: 327882
JRCXZ was already present, but not the others.
We never codegen this instruction so this doesn't affect much just trying to get them all into a single generated scheduler class in the output.
llvm-svn: 327881
The regex was looking for JECXZ_32 or JECXZ_64, but their is just one instruction called JECXZ. They used to exist as separate instructions, but were merged over 3 years ago.
llvm-svn: 327880
PowerPC targets do not use address spaces. As a result, we can get selection
failures with address space casts. This patch makes those casts noops.
Patch by Valentin Churavy.
Differential revision: https://reviews.llvm.org/D43781
llvm-svn: 327877
With the SRAs removed from the SSE2 code in D44267, then there doesn't appear to be any advantage to the sse41 code. The punpcklbw instruction and pmovsx seem to have the same latency and throughput on most CPUs. And the SSE41 code requires moving the upper 64-bits into the lower 64-bit before the sign extend can be done. The unpckhbw in sse2 code can do better than that.
llvm-svn: 327869
Sometimes we used the same itinerary for MEM and REG forms, but that seems inconsistent with our usual usage.
We also used the MUL8 itinerary for MULX32/64 which was also weird.
The test changes are because we were using IIC_IMUL32_RR and IIC_IMUL64_RR instead of IIC_IMUL32_REG/IIC_IMUL64_REG for the 32 and 64 bit multiplies that produce double width result.
llvm-svn: 327866