This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
llvm-svn: 186258
This makes it possible to write unit tests that are less susceptible
to minor code motion, particularly copy placement. block-placement.ll
covers this case with -pre-RA-sched=source which will soon be
default. One incorrectly named block is already fixed, but without
this fix, enabling new coalescing and scheduling would cause more
failures.
llvm-svn: 184680
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
llvm-svn: 182638
Previously, MBP essentially aligned every branch target it could. This
bloats code quite a bit, especially non-looping code which has no real
reason to prefer aligned branch targets so heavily.
As Andy said in review, it's still a bit odd to do this without a real
cost model, but this at least has much more plausible heuristics.
Fixes PR13265.
llvm-svn: 161409
If the result of a common subexpression is used at all uses of the candidate
expression, CSE should not increase the live range of the common subexpression.
rdar://11393714 and rdar://11819721
llvm-svn: 161396
This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.
This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.
I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.
I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.
I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.
llvm-svn: 154816
rotation. When there is a loop backedge which is an unconditional
branch, we will end up with a branch somewhere no matter what. Try
placing this backedge in a fallthrough position above the loop header as
that will definitely remove at least one branch from the loop iteration,
where whole loop rotation may not.
I haven't seen any benchmarks where this is important but loop-blocks.ll
tests for it, and so this will be covered when I flip the default.
llvm-svn: 154812
laid out in a form with a fallthrough into the header and a fallthrough
out of the bottom. In that case, leave the loop alone because any
rotation will introduce unnecessary branches. If either side looks like
it will require an explicit branch, then the rotation won't add any, do
it to ensure the branch occurs outside of the loop (if possible) and
maximize the benefit of the fallthrough in the bottom.
llvm-svn: 154806
This is a complex change that resulted from a great deal of
experimentation with several different benchmarks. The one which proved
the most useful is included as a test case, but I don't know that it
captures all of the relevant changes, as I didn't have specific
regression tests for each, they were more the result of reasoning about
what the old algorithm would possibly do wrong. I'm also failing at the
moment to craft more targeted regression tests for these changes, if
anyone has ideas, it would be welcome.
The first big thing broken with the old algorithm is the idea that we
can take a basic block which has a loop-exiting successor and a looping
successor and use the looping successor as the layout top in order to
get that particular block to be the bottom of the loop after layout.
This happens to work in many cases, but not in all.
The second big thing broken was that we didn't try to select the exit
which fell into the nearest enclosing loop (to which we exit at all). As
a consequence, even if the rotation worked perfectly, it would result in
one of two bad layouts. Either the bottom of the loop would get
fallthrough, skipping across a nearer enclosing loop and thereby making
it discontiguous, or it would be forced to take an explicit jump over
the nearest enclosing loop to earch its successor. The point of the
rotation is to get fallthrough, so we need it to fallthrough to the
nearest loop it can.
The fix to the first issue is to actually layout the loop from the loop
header, and then rotate the loop such that the correct exiting edge can
be a fallthrough edge. This is actually much easier than I anticipated
because we can handle all the hard parts of finding a viable rotation
before we do the layout. We just store that, and then rotate after
layout is finished. No inner loops get split across the post-rotation
backedge because we check for them when selecting the rotation.
That fix exposed a latent problem with our exitting block selection --
we should allow the backedge to point into the middle of some inner-loop
chain as there is no real penalty to it, the whole point is that it
*won't* be a fallthrough edge. This may have blocked the rotation at all
in some cases, I have no idea and no test case as I've never seen it in
practice, it was just noticed by inspection.
Finally, all of these fixes, and studying the loops they produce,
highlighted another problem: in rotating loops like this, we sometimes
fail to align the destination of these backwards jumping edges. Fix this
by actually walking the backwards edges rather than relying on loopinfo.
This fixes regressions on heapsort if block placement is enabled as well
as lots of other cases where the previous logic would introduce an
abundance of unnecessary branches into the execution.
llvm-svn: 154783
was centered around the premise of laying out a loop in a chain, and
then rotating that chain. This is good for preserving contiguous layout,
but bad for actually making sane rotations. In order to keep it safe,
I had to essentially make it impossible to rotate deeply nested loops.
The information needed to correctly reason about a deeply nested loop is
actually available -- *before* we layout the loop. We know the inner
loops are already fused into chains, etc. We lose information the moment
we actually lay out the loop.
The solution was the other alternative for this algorithm I discussed
with Benjamin and some others: rather than rotating the loop
after-the-fact, try to pick a profitable starting block for the loop's
layout, and then use our existing layout logic. I was worried about the
complexity of this "pick" step, but it turns out such complexity is
needed to handle all the important cases I keep teasing out of benchmarks.
This is, I'm afraid, a bit of a work-in-progress. It is still
misbehaving on some likely important cases I'm investigating in Olden.
It also isn't really tested. I'm going to try to craft some interesting
nested-loop test cases, but it's likely to be extremely time consuming
and I don't want to go there until I'm sure I'm testing the correct
behavior. Sadly I can't come up with a way of getting simple, fine
grained test cases for this logic. We need complex loop structures to
even trigger much of it.
llvm-svn: 145183
heavily on AnalyzeBranch. That routine doesn't behave as we want given
that rotation occurs mid-way through re-ordering the function. Instead
merely check that there are not unanalyzable branching constructs
present, and then reason about the CFG via successor lists. This
actually simplifies my mental model for all of this as well.
The concrete result is that we now will rotate more loop chains. I've
added a test case from Olden highlighting the effect. There is still
a bit more to do here though in order to regain all of the performance
in Olden.
llvm-svn: 145179
pass. This is designed to achieve one of the important optimizations
that the old code placement pass did, but more simply.
This is a somewhat rough and *very* conservative version of the
transform. We could get a lot fancier here if there are profitable cases
to do so. In particular, this only looks for a single pattern, it
insists that the loop backedge being rotated away is the last backedge
in the chain, and it doesn't provide any means of doing better in-loop
placement due to the rotation. However, it appears that it will handle
the important loops I am finding in the LLVM test suite.
llvm-svn: 145158
need lots of fanciness around retaining a reference to a Chain's slot in
the BlockToChain map, but that's all gone now. We can just go directly
to allocating the new chain (which will update the mapping for us) and
using it.
Somewhat gross mechanically generated test case replicates the issue
Duncan spotted when actually testing this out.
llvm-svn: 145120
conflicts, we should only be adding the first block of the chain to the
list, lest we try to merge into the middle of that chain. Most of the
places we were doing this we already happened to be looking at the first
block, but there is no reason to assume that, and in some cases it was
clearly wrong.
I've added a couple of tests here. One already worked, but I like having
an explicit test for it. The other is reduced from a test case Duncan
reduced for me and used to crash. Now it is handled correctly.
llvm-svn: 145119
further. This invariant just wasn't going to work in the face of
unanalyzable branches; we need to be resillient to the phenomenon of
chains poking into a loop and poking out of a loop. In fact, we already
were, we just needed to not assert on it.
This was found during a bootstrap with block placement turned on.
llvm-svn: 145100
successors, they just are all landing pad successors. We handle this the
same way as no successors. Comments attached for the next person to wade
through here and another lovely test case courtesy of Benjamin Kramer's
bugpoint reduction.
llvm-svn: 145098
reversed in the function's original ordering, and we happened to
encounter it while handling an outer unnatural CFG structure.
Thanks to the test case reduced from GCC's source by Benjamin Kramer.
This may also fix a crasher in gzip that Duncan reduced for me, but
I haven't yet gotten to testing that one.
llvm-svn: 145094
updateTerminator code didn't correctly handle EH terminators in one very
specific case. AnalyzeBranch would find no terminator instruction, and
so the fallback in updateTerminator is to assume fallthrough. This is
correct, but the destination of the fallthrough was assumed to be the
first successor.
This is *almost always* true, but in certain cases the loop
transformations will cause the landing pad to be the first successor!
Instead of this brittle logic, actually look through the successors for
a non-landing-pad accessor, and to assert if more than one is found.
This will hopefully fix some (if not all) of the self host miscompiles
with block placement. Thanks to Benjamin Kramer for reporting, Nick
Lewycky for an initial stab at a reduction, and Duncan for endless
advice on EH (which I know nothing about) as well as reviewing the
actual fix.
llvm-svn: 145062
properly account for the *global* probability of the edge being taken.
This manifested as a very large number of unconditional branches to
blocks being merged against the CFG even though they weren't
particularly hot within the CFG.
The fix is to check whether the edge being merged is both locally hot
relative to other successors for the source block, and globally hot
compared to other (unmerged) predecessors of the destination block.
This introduces a new crasher on GCC single-source, but it's currently
behind a flag, and Ben has offered to work on the reduction. =]
llvm-svn: 145010
is actually being tested. Also add some FileCheck goodness to much more
carefully ensure that the result is the desired result. Before this test
would only have failed through an assert failure if the underlying fix
were reverted.
Also, add some weight metadata and a comment explaining exactly what is
going on to a trick section of the test case. Originally, we were
getting very unlucky and trying to form a block chain that isn't
actually profitable. I'm working on a fix to avoid forming these
unprofitable chains, and that would also have masked any failure from
this test case. The easy solution is to add some metadata that makes it
*really* profitable to form the bad chain here.
llvm-svn: 145006
formation phase and into the initial walk of the basic blocks. We
essentially pre-merge all blocks where unanalyzable fallthrough exists,
as we won't be able to update the terminators effectively after any
reorderings. This is quite a bit more principled as there may be CFGs
where the second half of the unanalyzable pair has some analyzable
predecessor that gets placed first. Then it may get placed next,
implicitly breaking the unanalyzable branch even though we never even
looked at the part that isn't analyzable. I've included a test case that
triggers this (thanks Benjamin yet again!), and I'm hoping to synthesize
some more general ones as I dig into related issues.
Also, to make this new scheme work we have to be able to handle branches
into the middle of a chain, so add this check. We always fallback on the
incoming ordering.
Finally, this starts to really underscore a known limitation of the
current implementation -- we don't consider broken predecessors when
merging successors. This can caused major missed opportunities, and is
something I'm planning on looking at next (modulo more bug reports).
llvm-svn: 144994
block sequence when recovering from unanalyzable control flow
constructs, *always* use the function sequence. I'm not sure why I ever
went down the path of trying to use the loop sequence, it is
fundamentally not the correct sequence to use. We're trying to preserve
the incoming layout in the cases of unreasonable control flow, and that
is only encoded at the function level. We already have a filter to
select *exactly* the sub-set of blocks within the function that we're
trying to form into a chain.
The resulting code layout is also significantly better because of this.
In several places we were ending up with completely unreasonable control
flow constructs due to the ordering chosen by the loop structure for its
internal storage. This change removes a completely wasteful vector of
basic blocks, saving memory allocation in the common case even though it
costs us CPU in the fairly rare case of unnatural loops. Finally, it
fixes the latest crasher reduced out of GCC's single source. Thanks
again to Benjamin Kramer for the reduction, my bugpoint skills failed at
it.
llvm-svn: 144627
the sum of the edge weights not overflowing uint32, and crashed when
they did. This is generally safe as BranchProbabilityInfo tries to
provide this guarantee. However, the CFG can get modified during codegen
in a way that grows the *sum* of the edge weights. This doesn't seem
unreasonable (imagine just adding more blocks all with the default
weight of 16), but it is hard to come up with a case that actually
triggers 32-bit overflow. Fortuately, the single-source GCC build is
good at this. The solution isn't very pretty, but its no worse than the
previous code. We're already summing all of the edge weights on each
query, we can sum them, check for an overflow, compute a scale, and sum
them again.
I've included a *greatly* reduced test case out of the GCC source that
triggers it. It's a pretty lame test, as it clearly is just barely
triggering the overflow. I'd like to have something that is much more
definitive, but I don't understand the fundamental pattern that triggers
an explosion in the edge weight sums.
The buggy code is duplicated within this file. I'll colapse them into
a single implementation in a subsequent commit.
llvm-svn: 144526
get loop info structures associated with them, and so we need some way
to make forward progress selecting and placing basic blocks. The
technique used here is pretty brutal -- it just scans the list of blocks
looking for the first unplaced candidate. It keeps placing blocks like
this until the CFG becomes tractable.
The cost is somewhat unfortunate, it requires allocating a vector of all
basic block pointers eagerly. I have some ideas about how to simplify
and optimize this, but I'm trying to get the logic correct first.
Thanks to Benjamin Kramer for the reduced test case out of GCC. Sadly
there are other bugs that GCC is tickling that I'm reducing and working
on now.
llvm-svn: 144516
second algorithm, but only loosely. It is more heavily based on the last
discussion I had with Andy. It continues to walk from the inner-most
loop outward, but there is a key difference. With this algorithm we
ensure that as we visit each loop, the entire loop is merged into
a single chain. At the end, the entire function is treated as a "loop",
and merged into a single chain. This chain forms the desired sequence of
blocks within the function. Switching to a single algorithm removes my
biggest problem with the previous approaches -- they had different
behavior depending on which system triggered the layout. Now there is
exactly one algorithm and one basis for the decision making.
The other key difference is how the chain is formed. This is based
heavily on the idea Andy mentioned of keeping a worklist of blocks that
are viable layout successors based on the CFG. Having this set allows us
to consistently select the best layout successor for each block. It is
expensive though.
The code here remains very rough. There is a lot that needs to be done
to clean up the code, and to make the runtime cost of this pass much
lower. Very much WIP, but this was a giant chunk of code and I'd rather
folks see it sooner than later. Everything remains behind a flag of
course.
I've added a couple of tests to exercise the issues that this iteration
was motivated by: loop structure preservation. I've also fixed one test
that was exhibiting the broken behavior of the previous version.
llvm-svn: 144495
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.
The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.
As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.
Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.
The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.
llvm-svn: 142743
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.
This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.
Test is updated to include both basic loop alignment and nested loop
alignment.
llvm-svn: 142645
canonical example I used when developing it, and is one of the primary
motivating real-world use cases for __builtin_expect (when burried under
a macro).
I'm working on more test cases here, but I'm trying to make sure both
that the pass is doing the right thing with the test cases and that they
aren't too brittle to changes elsewhere in the code generation pipeline.
Feedback and/or suggestions on how to test this are very welcome.
Especially feedback on whether testing the block comments is a good
strategy; I couldn't find any good examples to steal from but all the
other ideas I had were a lot uglier or more fragile.
llvm-svn: 142644