Enforce the assumption made on tensor buffers explicitly. When in-place,
reuse the buffer, but fill with all zeroes for the non-update case, since
the kernel assumes all elements are written to. When not in-place, zero
out the new buffer when materializing or when no-updates occur. Copy the
original tensor value when updates occur. This prepares migrating to the
new bufferization strategy, where these assumptions must be made explicit.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D128691
Only the analysis part of the interface is implemented. The bufferization itself is performed by the SparseTensorConversion pass.
Differential Revision: https://reviews.llvm.org/D128138
Marking bufferization allocation operation as invalid
during sparse lowering is too strict, since dense and
sparse allocation can co-exist. This revision refines
the lowering with a dynamic type check.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D128305
This aligns the SCF dialect file layout with the majority of the dialects.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D128049
Follow up from flipping dialects to both, flip accessor used to prefixed
variant ahead to flipping from _Both to _Prefixed. This just flips to
the accessors introduced in the preceding change which are just prefixed
forms of the existing accessor changed from.
Mechanical change using helper script
https://github.com/jpienaar/llvm-project/blob/main/clang-tools-extra/clang-tidy/misc/AddGetterCheck.cpp and clang-format.
This fixes all sorts of ABI issues due to passing by-value
(using by-reference with memref's exclusively).
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D128018
The 'emit_c_wrappers' option in the FuncToLLVM conversion requests C interface
wrappers to be emitted for every builtin function in the module. While this has
been useful to bootstrap the interface, it is problematic in the longer term as
it may unintentionally affect the functions that should retain their existing
interface, e.g., libm functions obtained by lowering math operations (see
D126964 for an example). Since D77314, we have a finer-grain control over
interface generation via an attribute that avoids the problem entirely. Remove
the 'emit_c_wrappers' option. Introduce the '-llvm-request-c-wrappers' pass
that can be run in any pipeline that needs blanket emission of functions to
annotate all builtin functions with the attribute before performing the usual
lowering that accounts for the attribute.
Reviewed By: chelini
Differential Revision: https://reviews.llvm.org/D127952
The semi-ring blocks were simply "inlined" by the sparse compiler but
without any filtering or patching. This revision improves the analysis
(rejecting blocks that use non-invariant computations from outside
their blocks, except for linalg.index) and also improves the codegen
by properly patching up index computations (previous version crashed).
With a regression test. Also updated the documentation now that the
example code is properly working.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D128000
Using "default:" in the switch statemements that handle all our
merger ops has become a bit cumbersome since it is easy to overlook
parts of the code that need to handle ops specifically. By enforcing
full switch statements without "default:", we get a compiler warning
when cases are overlooked.
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D127263
This is the first PR to add `F16` and `BF16` support to the sparse codegen. There are still problems in supporting these two data types, such as `BF16` is not quite working yet.
Add tests cases.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D127010
Now that we have an AllocTensorOp (previously InitTensorOp) in the bufferization dialect, the InitOp in the sparse dialect is no longer needed.
Differential Revision: https://reviews.llvm.org/D126180
The trick of using an empty token in the `FOREVERY_O` x-macro relies on preprocessor behavior which is only standard since C99 6.10.3/4 and C++11 N3290 16.3/4 (whereas it was undefined behavior up through C++03 16.3/10). Since the `ExecutionEngine/SparseTensorUtils.cpp` file is required to be compile-able under C++98 compatibility mode (unlike the C++11 used elsewhere in MLIR), we shouldn't rely on that behavior.
Also, using a non-empty suffix helps improve uniformity of the API, since all other primary/overhead suffixes are also non-empty. I'm using the suffix `0` since that's the value used by the `SparseTensorEncoding` attribute for indicating the index overhead-type.
Depends On D126720
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126724
By defining the `{primary,overhead}TypeFunctionSuffix` functions via the same x-macros used to generate the runtime library's functions themselves, this helps avoid bugs from typos or things getting out of sync.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D126720
This is the first implementation of complex (f64 and f32) support
in the sparse compiler, with complex add/mul as first operations.
Note that various features are still TBD, such as other ops, and
reading in complex values from file. Also, note that the
std::complex<float> had a bit of an ABI issue when passed as
single argument. It is still TBD if better solutions are possible.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D125596
Although we now have semi-rings to deal with arbitrary ops,
it is still good to convey zero-preserving semantics of
ops to the sparse compiler.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D125043
Adding lowering for Unary and Binary required several changes due to
their unique nature of containing custom code for different "regions"
of the sparse structure being operated on. Along with a Kind, a pointer
to the Operation is passed along to be merged once the lattice
structure is figured out.
The original operation is maintained, as it is required for subsequent
lattice decisions. However, sparse_tensor.binary has some branches
are considered as fully handled and therefore are marked with as
kBinaryBranch to distinguish them.
A unique aspect of the custom code is that sometimes the desired result
is no result at all -- i.e. a user wants overlapping sparse entries to
become empty in the output. The solution to this is to return an
uninitialized Value(), which is checked and handled elsewhere in the
code and results in nothing being written to the output tensor for that
case.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D123057
This allows for inferring the result types of operations in certain situations by using the type of
an operand. This commit allowed for automatically supporting type inference for many more
operations with no additional effort, e.g. nearly all Arithmetic operations now support
result type inferrence with no additional changes.
Differential Revision: https://reviews.llvm.org/D124581
Current index value generation uses fixed-length vector ops, this patch
adds an alterantive codegen path compatible with scalable vectors by
using `LLVM::StepVectorOp`.
Differential Revision: https://reviews.llvm.org/D124454
The SparseTensor passes currently use opaque numbers for the CLI, despite using an enum internally. This patch exposes the enums instead of numbered items that are matched back to the enum.
Fixes GitHub issue #53389
Reviewed by: aartbik, mehdi_amini
Differential Revision: https://reviews.llvm.org/D123876
Now that dialect constructors are generated in the .cpp file, we can
drop all of the dependent dialect includes from the .h file.
Differential Revision: https://reviews.llvm.org/D124298
Rationale:
Allocating the temporary buffers for access pattern expansion on the stack
(using alloca) is a bit too agressive, since it easily runs out of stack space
for large enveloping tensor dimensions. This revision changes the dynamic
allocation of these buffers with explicit alloc/dealloc pairs.
Reviewed By: bixia, wrengr
Differential Revision: https://reviews.llvm.org/D123253
Prior to this change there were a number of places where the allocation and deallocation of SparseTensorCOO objects were not cleanly paired, leading to inconsistencies regarding whether each function released its tensor/coo arguments or not, as well as making it easy to run afoul of memory leaks, use-after-free, or double-free errors. This change cleans up the codegen vs runtime boundary to resolve those issues. Now, the only time the runtime library frees an object is either (a) because it's a function explicitly designed to do so, or (b) because the allocated object is entirely local to the function and would be a memory leak if not released. Thus, now the codegen takes complete responsibility for releasing any objects it caused to be allocated.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122435
Use "enable-vla-vectorization=vla" to generate a vector length agnostic
loops during vectorization. This option works for vectorization strategy 2.
Differential Revision: https://reviews.llvm.org/D118379
This is work towards: https://github.com/llvm/llvm-project/issues/51652
This differential sets up the options and threads them through everywhere, but doesn't actually use them yet. The differential that finally makes use of them is D122061, which is the final differential in the chain that fixes bug 51652.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122054