This commit enables the tests located in test/YAMLParser directory.
Those tests were never actually enabled, as llvm-lit didn't pick up the
files with the 'data' extension. The commit renames those test files to files
with the 'test' extension so that llvm-lit would find them.
This commit also modifies yaml-bench so that it returns an error status
if an error occurred during parsing. It also adds the '-use-color'
command line option to yaml-bench (to make sure that file check matches
the error messages in the output stream).
This commit modifies some of the renamed tests so that they wouldn't
fail. It gets rid of XFAILs and uses the 'not' command instead for
some of the tests that have to fail during parsing. This commit
also adds some 'FIXME' comments to a couple of tests that are
supposed to fail but currently pass because of various bugs
in the implementation of the yaml parser.
Reviewers: Justin Bogner
Differential Revision: http://reviews.llvm.org/D9448
llvm-svn: 236754
http://reviews.llvm.org/D9517
The separate header file allows to reuse the MIPS ABI flags structure
constants in other LLVM tools like the llvm-readobj.
No functional changes.
llvm-svn: 236732
Added intrinsics for the instructions. CC parameter of the intrinsics was changed from i8 to i32 according to the spec.
By Igor Breger (igor.breger@intel.com)
llvm-svn: 236714
Summary:
This gives frontend more precise control over collected coverage
information. User can still override these options by passing
-mllvm flags.
No functionality change.
Test Plan: regression test suite.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9539
llvm-svn: 236687
Created an abstraction for log2, llvm::Log2 in Support/MathExtras.h
Hid Android problems inside of it
Differential Revision: http://reviews.llvm.org/D9467
llvm-svn: 236680
options.
This commit fixes a bug in llc and opt where "-mcpu" and "-mattr" wouldn't
override function attributes "-target-cpu" and "-target-features" in the IR.
Differential Revision: http://reviews.llvm.org/D9537
llvm-svn: 236677
Renames the original CreateGCStatepoint to CreateGCStatepointCall, and
moves invoke creating functionality from PlaceSafepoints.cpp to
IRBuilder.cpp.
This changes the labels generated for PlaceSafepoints/invokes.ll so use
a regex there to make the basic block labels more resilient.
llvm-svn: 236672
This commit changes the 'skip' method in the 'KeyValueNode' class
to ensure that it doesn't dereference a null pointer when calling
the 'skip' method of its value child node. It also adds a unittest
that ensures that the crash doesn't occur.
This change is motivated by a patch that implements parsing
of YAML block scalars (http://reviews.llvm.org/D9503), as one
of the unittests in that patch triggered this problem.
llvm-svn: 236669
This makes use of the new API which can remove attributes from a set given a builder.
This is much faster than creating a temporary set and reduces llc time by about 0.3% which was all spent creating temporary attributes sets on the context.
llvm-svn: 236668
Prior to this change we would have to construct a temporary AttributeSet (which isn't temporary at all given that its allocated on the context), just to contain the attributes in the builder, then call remove on that.
Now we can just remove any attributes from the (lightweight and really temporary) builder itself.
Will be used in a future commit to remove some temporary attributes sets.
llvm-svn: 236666
Since the coverage mapping reader and the instrprof reader were
emitting a shared set of error codes, the error messages you'd get
back from llvm-cov were ambiguous about what was actually wrong. Add
another error category to fix this.
I've also improved the wording on a couple of the instrprof errors,
for consistency.
llvm-svn: 236665
Specifically, this patch correctly respects the -demangle option,
and additionally adds a hidden --relative-address option allows
input addresses to be relative to the module load address instead
of absolute addresses into the image.
llvm-svn: 236653
Don't create names for temporary symbols when using an object streamer.
The names never make it to the output anyway. From the starting point
of r236629, my heap profile says this drops peak memory usage from 1100
MB to 1058 MB for CodeGen of `verify-uselistorder`, a savings of almost
4% on peak memory, and removes `StringMap<bool, BumpPtrAllocator...>`
from the profile entirely.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 236642
Summary:
This helper function creates a ctor function, which calls sanitizer's
init function with given arguments. This constructor is then expected
to be added to module's ctors. The patch helps unifying how sanitizer
constructor functions are created, and how init functions are called
across all sanitizers.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8777
llvm-svn: 236627
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
llvm-svn: 236613
For accessors in the `Statepoint` class, use symbolic constants for
offsets into the argument vector instead of literals. This makes the
code intent clearer and simpler to change.
llvm-svn: 236566
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
There are 2 structural changes here:
1. The main diff is that we're preparing to extend the optimization
flags to affect more than just binary SDNodes. Eg, IR intrinsics
( https://llvm.org/bugs/show_bug.cgi?id=21290 ) or non-binop nodes
that don't even exist in IR such as FMA, FNEG, etc.
2. The other change is that we're actually copying the FP fast-math-flags
from the IR instructions to SDNodes.
Differential Revision: http://reviews.llvm.org/D8900
llvm-svn: 236546
Note, this is a reapplication of r236515 with a fix to not assert on non-register operands, but instead only handle them until the subsequent commit. Original commit message follows.
The code was basically the same here already. Just added an out parameter for a vector of seen defs so that UpdatePredRedefs can call StepForward first, then do its own post processing on the seen defs.
Will be used in the next commit to also handle regmasks.
llvm-svn: 236538
This adds intrinsics to allow access to all of the z13 vector instructions.
Note that instructions whose semantics can be described by standard LLVM IR
do not get any intrinsics.
For each instructions whose semantics *cannot* (fully) be described, we
define an LLVM IR target-specific intrinsic that directly maps to this
instruction.
For instructions that also set the condition code, the LLVM IR intrinsic
returns the post-instruction CC value as a second result. Instruction
selection will attempt to detect code that compares that CC value against
constants and use the condition code directly instead.
Based on a patch by Richard Sandiford.
llvm-svn: 236527
The code was basically the same here already. Just added an out parameter for a vector of seen defs so that UpdatePredRedefs can call StepForward first, then do its own post processing on the seen defs.
Will be used in the next commit to also handle regmasks.
llvm-svn: 236514
This reverts commit r236360.
This change exposed a bug in WinEHPrepare by opting win32 code into EH
preparation. We already knew that WinEHPrepare has bugs, and is the
status quo for x64, so I don't think that's a reason to hold off on this
change. I disabled exceptions in the sanitizer tests in r236505 and an
earlier revision.
llvm-svn: 236508
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
and avoid cloning unused decls into every partition.
Module partitioning showed up as a source of significant overhead when I
profiled some trivial test cases. Avoiding the overhead of partitionging
for uncalled functions helps to mitigate this.
This change also means that it is no longer necessary to have a
LazyEmittingLayer underneath the CompileOnDemand layer, since the
CompileOnDemandLayer will not extract or emit function bodies until they are
called.
llvm-svn: 236465
This patch adds an optional 'flow' field to the MappingTrait
class so that yaml IO will be able to output flow mappings.
Reviewers: Justin Bogner
Differential Revision: http://reviews.llvm.org/D9450
llvm-svn: 236456