sequence - target independent framework
When the DAGcombiner selects instruction sequences
it could increase the critical path or resource len.
For example, on arm64 there are multiply-accumulate instructions (madd,
msub). If e.g. the equivalent multiply-add sequence is not on the
crictial path it makes sense to select it instead of the combined,
single accumulate instruction (madd/msub). The reason is that the
conversion from add+mul to the madd could lengthen the critical path
by the latency of the multiply.
But the DAGCombiner would always combine and select the madd/msub
instruction.
This patch uses machine trace metrics to estimate critical path length
and resource length of an original instruction sequence vs a combined
instruction sequence and picks the faster code based on its estimates.
This patch only commits the target independent framework that evaluates
and selects code sequences. The machine instruction combiner is turned
off for all targets and expected to evolve over time by gradually
handling DAGCombiner pattern in the target specific code.
This framework lays the groundwork for fixing
rdar://16319955
llvm-svn: 214666
There is no needed for neither 1-dimensional nor higher dimensional arrays to
require positive offsets in the outermost array dimension.
We originally introduced this assumption with the support for delinearizing
multi-dimensional arrays.
llvm-svn: 214665
This makes EmitWindowsUnwindTables a virtual function and lowers the
implementation of the function to the X86WinCOFFStreamer. This method is a
target specific operation. This enables making the behaviour target dependent
by isolating it entirely to the target specific streamer.
llvm-svn: 214664
The frame information stored in this structure is driven by the requirements for
Windows NT unwinding rather than Windows 64 specifically. As a result, this
type can be shared across multiple architectures (ARM, AXP, MIPS, PPC, SH).
Rename this class in preparation for adding support for supporting unwinding
information for Windows on ARM.
Take the opportunity to constify the members as everything except the
ChainedParent is read-only. This required some adjustment to the label
handling.
llvm-svn: 214663
This slipped in in r214467, so something like
V_MOV_B32_e32 v0, ... is now printed with 2 spaces
between the instruction name and first operand.
llvm-svn: 214660
+ Remove the class IslGenerator which duplicates the functionality of
IslExprBuilder.
+ Use the IslExprBuilder to create code for memory access relations.
+ Also handle array types during access creation.
+ Enable scev codegen for one of the transformed memory access tests,
thus access creation without canonical induction variables available.
+ Update one test case to the new output.
llvm-svn: 214659
The updated tests use a different context than the old ones did.
Other than that only their path and the code generation we use
changed.
llvm-svn: 214657
when let can do the same thing. Keep the 64bit variants as codegen-only.
While they have a different register class, the encoding is the same for
32bit and 64bit mode. Having both present would otherwise confuse the
disassembler.
llvm-svn: 214636
Darwin x86 asm comment prefix designed to work around GAS on that
platform. That makes the comment-matching of the test much more stable.
llvm-svn: 214629
lowering with a small addition to it and adding PSHUFB combining.
There is one obvious place in the new vector shuffle lowering where we
should form PSHUFBs directly: when without them we will unpack a vector
of i8s across two different registers and do a potentially 4-way blend
as i16s only to re-pack them into i8s afterward. This is the crazy
expensive fallback path for i8 shuffles and we can just directly use
pshufb here as it will always be cheaper (the unpack and pack are
two instructions so even a single shuffle between them hits our
three instruction limit for forming PSHUFB).
However, this doesn't generate very good code in many cases, and it
leaves a bunch of common patterns not using PSHUFB. So this patch also
adds support for extracting a shuffle mask from PSHUFB in the X86
lowering code, and uses it to handle PSHUFBs in the recursive shuffle
combining. This allows us to combine through them, combine multiple ones
together, and generally produce sufficiently high quality code.
Extracting the PSHUFB mask is annoyingly complex because it could be
either pre-legalization or post-legalization. At least this doesn't have
to deal with re-materialized constants. =] I've added decode routines to
handle the different patterns that show up at this level and we dispatch
through them as appropriate.
The two primary test cases are updated. For the v16 test case there is
still a lot of room for improvement. Since I was going through it
systematically I left behind a bunch of FIXME lines that I'm hoping to
turn into ALL lines by the end of this.
llvm-svn: 214628
of normally binary shuffle instructions like PUNPCKL and MOVLHPS.
This detects cases where a single register is used for both operands
making the shuffle behave in a unary way. We detect this and adjust the
mask to use the unary form which allows the existing DAG combine for
shuffle instructions to actually work at all.
As a consequence, this uncovered a number of obvious bugs in the
existing DAG combine which are fixed. It also now canonicalizes several
shuffles even with the existing lowering. These typically are trying to
match the shuffle to the domain of the input where before we only really
modeled them with the floating point variants. All of the cases which
change to an integer shuffle here have something in the integer domain, so
there are no more or fewer domain crosses here AFAICT. Technically, it
might be better to go from a GPR directly to the floating point domain,
but detecting floating point *outputs* despite integer inputs is a lot
more code and seems unlikely to be worthwhile in practice. If folks are
seeing domain-crossing regressions here though, let me know and I can
hack something up to fix it.
Also as a consequence, a bunch of missed opportunities to form pshufb
now can be formed. Notably, splats of i8s now form pshufb.
Interestingly, this improves the existing splat lowering too. We go from
3 instructions to 1. Yes, we may tie up a register, but it seems very
likely to be worth it, especially if splatting the 0th byte (the
common case) as then we can use a zeroed register as the mask.
llvm-svn: 214625
so using a single helper which adds operands back onto the worklist.
Several places didn't rigorously do this but a couple already did.
Factoring them together and doing it rigorously is important to delete
things recursively early on in the combiner and get a chance to see
accurate hasOneUse values. While no existing test cases change, an
upcoming patch to add DAG combining logic for PSHUFB requires this to
work correctly.
llvm-svn: 214623
during DAGCombine in certain circumstances. Unfortunately, the circumstances required
to trigger the issue seem to require a pretty specific interaction of DAGCombines,
and I haven't been able to find a testcase that reproduces on X86, ARM, or AArch64.
The functionality added here is replicated in essentially every other DAG combine,
so it seems pretty obviously correct.
llvm-svn: 214622
It was hardcoding the value "python", which will end up at best
getting a different python executable (if the user has overridden
the value of PYTHON_EXECUTABLE), and at worst encountering an
error (if there is no copy of python on the system path).
This patch changes the script to use sys.executable so that it
runs the sub-script with the same executable that it was run with.
llvm-svn: 214618
expanding pseudo LOAD_STATCK_GUARD using instructions that are normally used
in pic mode. This patch fixes the bug.
<rdar://problem/17886592>
llvm-svn: 214614
This is something that I have found to be very useful in my work and I
wanted to contribute it back to the community since several people in
the past have asked me for something along these lines. (Jakob, I know
this has been a while coming ; )]
The way you use this is you create a script that takes in as its first
argument a count. The script passes into LLVM the count via a command
line flag that disables a pass after LLVM has run after the pass has
run for count number of times. Then the script invokes a test of some
sort and indicates whether LLVM successfully compiled the test via the
scripts exit status. Then you invoke bisect as follows:
bisect --start=<start_num> --end=<end_num> ./script.sh "%(count)s"
And bisect will continually call ./script.sh with various counts using
the exit status to determine success and failure.
llvm-svn: 214610
Summary:
This patch add a --show-xfail flag. If this flag is specified then each xfail test will be printed to output.
When it is not given xfail tests are ignored. Ignoring xfail tests is the current behavior.
This flag is meant to mirror the --show-unsupported flag that was recently added.
Reviewers: ddunbar, EricWF
Reviewed By: EricWF
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4750
llvm-svn: 214609
compilation database and makes it behave consistently with other clang tools.
Reviewers: klimek, pcc
Reviewed By: pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4763
llvm-svn: 214607
makes a mess of the lit output when they ultimately fail.
The 2012-10-02-DAGCycle test is really frustrating because the *only*
explanation for what it is testing is a rdar link. I would really rather
that rdar links (which are not public or part of the open source
project) were not committed to the source code. Regardless, the actual
problem *must* be described as the rdar link is completely opaque. The
fact that this test didn't check for any particular output further
exacerbates the inability of any other developer to debug failures.
The mem-promote-integers test has nice comments and *seems* to be
a great test for our lowering... except that we don't actually check
that any of the generated code is correct or matches some pattern. We
just avoid crashing. It would be great to go back and populate this test
with the actual expectations.
llvm-svn: 214605
Instead of creating global variables for source locations and global names,
just create metadata nodes and strings. They will be transformed into actual
globals in the instrumentation pass (if necessary). This approach is more
flexible:
1) we don't have to ensure that our custom globals survive all the optimizations
2) if globals are discarded for some reason, we will simply ignore metadata for them
and won't have to erase corresponding globals
3) metadata for source locations can be reused for other purposes: e.g. we may
attach source location metadata to alloca instructions and provide better descriptions
for stack variables in ASan error reports.
No functionality change.
llvm-svn: 214604
introduced during legalization. This pattern is based on other patterns
in the legalizer that I changed in the same way. Now, the legalizer
eagerly collects its garbage when necessary so that we can survive
leaving such nodes around for it.
Instead, we add an assert to make sure the node will be correctly
handled by that layer.
llvm-svn: 214602