Commit Graph

3 Commits

Author SHA1 Message Date
Jakub Kuderski 638c085d07 [Dominators] Include infinite loops in PostDominatorTree
Summary:
This patch teaches PostDominatorTree about infinite loops. It is built on top of D29705 by @dberlin which includes a very detailed motivation for this change.

What's new is that the patch also teaches the incremental updater how to deal with reverse-unreachable regions and how to properly maintain and verify tree roots. Before that, the incremental algorithm sometimes ended up preserving reverse-unreachable regions after updates that wouldn't appear in the tree if it was constructed from scratch on the same CFG.

This patch makes the following assumptions:
- A sequence of updates should produce the same tree as a recalculating it.
- Any sequence of the same updates should lead to the same tree.
- Siblings and roots are unordered.

The last two properties are essential to efficiently perform batch updates in the future.
When it comes to the first one, we can decide later that the consistency between freshly built tree and an updated one doesn't matter match, as there are many correct ways to pick roots in infinite loops, and to relax this assumption. That should enable us to recalculate postdominators less frequently.

This patch is pretty conservative when it comes to incremental updates on reverse-unreachable regions and ends up recalculating the whole tree in many cases. It should be possible to improve the performance in many cases, if we decide that it's important enough.
That being said, my experiments showed that reverse-unreachable are very rare in the IR emitted by clang when bootstrapping  clang. Here are the statistics I collected by analyzing IR between passes and after each removePredecessor call:

```
# functions:  52283
# samples:  337609
# reverse unreachable BBs:  216022
# BBs:  247840796
Percent reverse-unreachable:  0.08716159869015269 %
Max(PercRevUnreachable) in a function:  87.58620689655172 %
# > 25 % samples:  471 ( 0.1395104988314885 % samples )
... in 145 ( 0.27733680163724345 % functions )
```

Most of the reverse-unreachable regions come from invalid IR where it wouldn't be possible to construct a PostDomTree anyway.

I would like to commit this patch in the next week in order to be able to complete the work that depends on it before the end of my internship, so please don't wait long to voice your concerns :).

Reviewers: dberlin, sanjoy, grosser, brzycki, davide, chandlerc, hfinkel

Reviewed By: dberlin

Subscribers: nhaehnle, javed.absar, kparzysz, uabelho, jlebar, hiraditya, llvm-commits, dberlin, david2050

Differential Revision: https://reviews.llvm.org/D35851

llvm-svn: 310940
2017-08-15 18:14:57 +00:00
Tobias Grosser f818c3300b Revert "Fix PR 24415 (at least), by making our post-dominator tree behavior sane."
and also "clang-format GenericDomTreeConstruction.h, since the current
formatting makes it look like their is a bug in the loop indentation, and there
is not"

This reverts commit r296535.

There are still some open design questions which I would like to discuss. I
revert this for Daniel (who gave the OK), as he is on vacation.

llvm-svn: 296812
2017-03-02 21:08:37 +00:00
Daniel Berlin 03f6938edc Fix PR 24415 (at least), by making our post-dominator tree behavior sane.
Summary:
Currently, our post-dom tree tries to ignore and remove the effects of
infinite loops.  It fails miserably at this, because it tries to do it
ahead of time, and thus can only detect self-loops, and any other type
of infinite loop, it pretends doesn't exist at all.

This can, in a bunch of cases, lead to wrong answers and a completely
empty post-dom tree.

Wrong answer:

```
declare void foo()
define internal void @f() {
entry:
  br i1 undef, label %bb35, label %bb3.i

bb3.i:
  call void @foo()
  br label %bb3.i

bb35.loopexit3:
  br label %bb35

bb35:
  ret void
}
```
We get:
```
Inorder PostDominator Tree:
  [1]  <<exit node>> {0,7}
    [2] %bb35 {1,6}
      [3] %bb35.loopexit3 {2,3}
      [3] %entry {4,5}
```

This is a trivial modification of the testcase for PR 6047
Note that we pretend bb3.i doesn't exist.
We also pretend that bb35 post-dominates entry.

While it's true that it does not exit in a theoretical sense, it's not
really helpful to try to ignore the effect and pretend that bb35
post-dominates entry.  Worse, we pretend the infinite loop does
nothing (it's usually considered a side-effect), and doesn't even
exist, even when it calls a function.  Sadly, this makes it impossible
to use when you are trying to move code safely.  All compilers also
create virtual or real single exit nodes (including us), and connect
infinite loops there (which this patch does).  In fact, others have
worked around our behavior here, to the point of building their own
post-dom trees:
https://zneak.github.io/fcd/2016/02/17/structuring.html and pointing
out the region infrastructure is near-useless for them with postdom in
this state :(

Completely empty post-dom tree:
```
define void @spam() #0 {
bb:
  br label %bb1

bb1:                                              ; preds = %bb1, %bb
  br label %bb1

bb2:                                              ; No predecessors!
  ret void
}
```
Printing analysis 'Post-Dominator Tree Construction' for function 'foo':
=============================--------------------------------
Inorder PostDominator Tree:
  [1]  <<exit node>> {0,1}

:(

(note that even if you ignore the effects of infinite loops, bb2
should be present as an exit node that post-dominates nothing).

This patch changes post-dom to properly handle infinite loops and does
root finding during calculation to prevent empty tress in such cases.

We match gcc's (and the canonical theoretical) behavior for infinite
loops (find the backedge, connect it to the exit block).

Testcases coming as soon as i finish running this on a ton of random graphs :)

Reviewers: chandlerc, davide

Subscribers: bryant, llvm-commits

Differential Revision: https://reviews.llvm.org/D29705

llvm-svn: 296535
2017-02-28 22:57:50 +00:00