This patch introduces tablegen class MCStatement.
Currently, an MCStatement can be either a return statement, or a switch
statement.
```
MCStatement:
MCReturnStatement
MCOpcodeSwitchStatement
```
A MCReturnStatement expands to a return statement, and the boolean expression
associated with the return statement is described by a MCInstPredicate.
An MCOpcodeSwitchStatement is a switch statement where the condition is a check
on the machine opcode. It allows the definition of multiple checks, as well as a
default case. More details on the grammar implemented by these two new
constructs can be found in the diff for TargetInstrPredicates.td.
This patch makes it easier to read the body of auto-generated TargetInstrInfo
predicates.
In future, I plan to reuse/extend the MCStatement grammar to describe more
complex target hooks. For now, this is just a first step (mostly a minor
cosmetic change to polish the new predicates framework).
Differential Revision: https://reviews.llvm.org/D50457
llvm-svn: 339352
As discussed on D41794, we have many cases where we fail to combine shuffles as the input operands have other uses.
This patch permits these shuffles to be combined as long as they don't introduce additional variable shuffle masks, which should reduce instruction dependencies and allow the total number of shuffles to still drop without increasing the constant pool.
However, this may mean that some memory folds may no longer occur, and on pre-AVX require the occasional extra register move.
This also exposes some poor PMULDQ/PMULUDQ codegen which was doing unnecessary upper/lower calculations which will in fact fold to zero/undef - the fix will be added in a followup commit.
Differential Revision: https://reviews.llvm.org/D50328
llvm-svn: 339335
According to PTX ISA .volatile has the same memory synchronization
semantics as .relaxed.sys, so it can be used to implement monotonic
atomic loads and stores. This is important for OpenMP's atomic
construct where
- 'read's and 'write's are lowered to atomic loads and stores, and
- an update of float or double types are lowered into a cmpxchg loop.
(Note that PTX could do better because it has atom.add.f{32,64} but
LLVM's atomicrmw instruction only allows integer types.)
Higher levels of atomicity (like acquire and release) need additional
synchronization properties which were added with PTX ISA 6.0 / sm_70.
So using these instructions still results in an error.
Differential Revision: https://reviews.llvm.org/D50391
llvm-svn: 339316
This pseudo-instruction is similar to la but uses PC-relative addressing
unconditionally. This is, la is only different to lla when using -fPIC. This
pseudo-instruction seems often forgotten in several specs but it is definitely
mentioned in binutils opcodes/riscv-opc.c. The semantics are defined both in
page 37 of the "RISC-V Reader" book but also in function macro found in
gas/config/tc-riscv.c.
This is a very first step towards adding PIC support for Linux in the RISC-V
backend.
The lla pseudo-instruction expands to a sequence of auipc + addi with a couple
of pc-rel relocations where the second points to the first one. This is
described in
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
For now, this patch only introduces support of that pseudo instruction at the
assembler parser.
Differential Revision: https://reviews.llvm.org/D49661
llvm-svn: 339314
Normally, if any registers are spilled, we prefer to spill lr on Thumb1
so we can fold the "bx lr" into the "pop". However, if there are tail
calls involved, restoring lr is expensive, so skip the optimization in
that case.
The spill of r7 in the new test also isn't necessary, but that's
mostly orthogonal to this patch. (It's the same code in
ARMFrameLowering, but it's not related to tail calls.)
Differential Revision: https://reviews.llvm.org/D49459
llvm-svn: 339283
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:
LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64
Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950
llvm-svn: 339260
Match the GNU assembler in supporting immediate operands for these
instructions even when the reg-reg mnemonic is used.
Differential Revision: https://reviews.llvm.org/D50046
Patch by Kito Cheng.
llvm-svn: 339252
Fixup test to check for GCN prefix
These patterns always zero extend the result even though it might need sign extension.
This has been broken since the addition of i16 support.
It has popped up in mad_sat(char) test since min(max()) combination is turned into v_med3, resulting in the following (incorrect) sequence:
v_mad_i16 v2, v10, v9, v11
v_med3_i32 v2, v2, v8, v7
Fixes mad_sat(char) piglit on VI.
Differential Revision: https://reviews.llvm.org/D49836
llvm-svn: 339190
Add missing SIMD types (v2f64) and binary ops. Also adds
tablegen support for automatically prepending prefix byte to SIMD
opcodes.
Differential Revision: https://reviews.llvm.org/D50292
Patch by Thomas Lively
llvm-svn: 339186
Vgather requires must be in a packet with a store, which contradicts
the no-packets feature. As a consequence, gather/scatter could not be
used with no-packets. Relax this, and allow gather packets as exceptions
to the no-packets requirements.
llvm-svn: 339177
Summary:
This patch extends CFGSort pass to support exception handling. Once it
places a loop header, it does not place blocks that are not dominated by
the loop header until all the loop blocks are sorted. This patch extends
the same algorithm to exception 'catch' part, using the information
calculated by WebAssemblyExceptionInfo class.
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D46500
llvm-svn: 339172
Remove the redundant check against zero when updating ProcResourceCounters in
nextGroup(), as pointed out in https://reviews.llvm.org/D50187.
Review: Ulrich Weigand.
llvm-svn: 339139
When potential jump instruction and target are in the same segment, use
jump instruction with immediate field.
In cases where offset does not fit immediate value of a bc/j instructions,
offset is stored into register, and then jump register instruction is used.
Differential Revision: https://reviews.llvm.org/D48019
llvm-svn: 339126
This is necessary to add a VI specific builtin,
__builtin_amdgcn_s_dcache_wb. We already have an
overly specific feature for one of these builtins,
for s_memrealtime. I'm not sure whether it's better
to add more of those, or to get rid of that and merge
it with vi-insts.
Alternatively, maybe this logically goes with scalar-stores?
llvm-svn: 339104
Src0 doesn't really convey any meaning to what the operand is. Passthru matches what's used in the documentation for the intrinsic this comes from.
llvm-svn: 339101
Summary:
Wasm does not have direct counterparts to some of LLVM IR's atomicrmw
instructions (min, max, umin, umax, and nand). This enables atomic
expansion using cmpxchg instruction within a loop for those atomicrmw
instructions.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D49440
llvm-svn: 339084
Summary:
The spec only defines a SIMD expression type of V128 and
leaves interpretation of different vector types to the instructions.
Differential Revision: https://reviews.llvm.org/D50367
Patch by Thomas Lively
llvm-svn: 339082
Everything should quiet, and I think everything should
flush.
I assume the min3/med3/max3 follow the same rules
as regular min/max for flushing, which should at
least be conservatively correct.
There are still more operations that need to
be handled.
llvm-svn: 339065
Not sure why this was checking for denormals for f16.
My interpretation of the IEEE standard is conversions
should produce a canonical result, and the ISA manual
says denormals are created when appropriate.
llvm-svn: 339064
If denormals are enabled, denormals are canonical.
Also fix a few other issues. minnum/maxnum are supposed
to canonicalize. Temporarily improve workaround for the
instruction behavior change in gfx9.
Handle selects and fcopysign.
The tests were also largely broken, since they were
checking for a flush used on some targets after the
store of the result.
llvm-svn: 339061
Summary:
Expand isFNEG so that we generate the appropriate F(N)M(ADD|SUB)
instructions in more cases. For example, the following sequence
a = _mm256_broadcast_ss(f)
d = _mm256_fnmadd_ps(a, b, c)
generates an fsub and fma without this patch and an fnma with this
change.
Reviewers: craig.topper
Subscribers: llvm-commits, davidxl, wmi
Differential Revision: https://reviews.llvm.org/D48467
llvm-svn: 339043
If the store is volatile this might be a memory mapped IO access. In that case we shouldn't generate a load that didn't exist in the source
Differential Revision: https://reviews.llvm.org/D50270
llvm-svn: 339041
Summary:
Ensure that NormalizedBuildVector returns a BUILD_VECTOR with operands of the
same type. This fixes an assertion failure in VerifySDNode.
Reviewers: SjoerdMeijer, t.p.northover, javed.absar
Reviewed By: SjoerdMeijer
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D50202
llvm-svn: 339013
ld64 supplies its own Thumb bit for Thumb functions, and intentionally zeroes
out that part of any addend in an object file. But it only does that for
symbols marked N_EXT -- i.e. external symbols. So LLVM should avoid setting
that extra bit in other cases.
llvm-svn: 339007
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
At one point in time acquire implied mayLoad and mayStore as did release. Thus we needed separate pseudos that also carried that property. This appears to no longer be the case. I believe it was changed in 2012 with a comment saying that atomic memory accesses are marked volatile which preserves the ordering.
So from what I can tell we shouldn't need additional pseudos since they aren't carry any flags that are different from the normal instructions. The only thing I can think of is that we may consider them for load folding candidates in the peephole pass now where we didn't before. If that's important hopefully there's something in the memory operand we can check to prevent the folding without relying on pseudo instructions.
Differential Revision: https://reviews.llvm.org/D50212
llvm-svn: 338925
Add a parameter for testing specifically for
sNaNs - at least one instruction pattern on AMDGPU
needs to check specifically for this.
Also handle more cases, and add a target hook
for custom nodes, similar to the hooks for known
bits.
llvm-svn: 338910
Clang uses "ctpop & 1" to implement __builtin_parity. If the popcnt instruction isn't supported this generates a large amount of code to calculate the population count. Instead we can bisect the data down to a single byte using xor and then check the parity flag.
Even when popcnt is supported, its still a good idea to split 64-bit data on 32-bit targets using an xor in front of a single popcnt. Otherwise we get two popcnts and an add before the and.
I've specifically targeted this at the sizes supported by clang builtins, but we could generalize this if we think that's useful.
Differential Revision: https://reviews.llvm.org/D50165
llvm-svn: 338907
Some instructions expand to more than one decoder group.
This has been hitherto ignored, but is handled with this patch.
Review: Ulrich Weigand
https://reviews.llvm.org/D50187
llvm-svn: 338849
There are a lot of permutations of types here generating a lot of patterns in the isel table. It's more efficient to just ReplaceUses and RemoveDeadNode from the Select function.
The test changes are because we have a some shuffle patterns that have a bitcast as their root node. But the behavior is identical to another instruction whose pattern doesn't start with a bitcast. So this isn't a functional change.
llvm-svn: 338824
Move all the patterns to X86InstrVecCompiler.td so we can keep SSE/AVX/AVX512 all in one place.
To save some patterns we'll use an existing DAG combine to convert f128 fand/for/fxor to integer when sse2 is enabled. This allows use to reuse all the existing patterns for v2i64.
I believe this now makes SHA instructions the only case where VEX/EVEX and legacy encoded instructions could be generated simultaneously.
llvm-svn: 338821
If the producing instruction is legacy encoded it doesn't implicitly zero the upper bits. This is important for the SHA instructions which don't have a VEX encoded version. We might also be able to hit this with the incomplete f128 support that hasn't been ported to VEX.
llvm-svn: 338812
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.
llvm-svn: 338806
Summary:
By not reconstructing the operand list of the SDNode, this change makes
it easier to add the forthcoming new tbuffer and buffer intrinsics.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49995
Change-Id: I0cb79ef0801532645d7dd954a6d7355139db7b38
llvm-svn: 338784
Summary:
I encountered some problems with SIFixWWMLiveness when WWM is in a loop:
1. It sometimes gave invalid MIR where there is some control flow path
to the new implicit use of a register on EXIT_WWM that does not pass
through any def.
2. There were lots of false positives of registers that needed to have
an implicit use added to EXIT_WWM.
3. Adding an implicit use to EXIT_WWM (and adding an implicit def just
before the WWM code, which I tried in order to fix (1)) caused lots
of the values to be spilled and reloaded unnecessarily.
This commit is a rework of SIFixWWMLiveness, with the following changes:
1. Instead of considering any register with a def that can reach the WWM
code and a def that can be reached from the WWM code, it now
considers three specific cases that need to be handled.
2. A register that needs liveness over WWM to be synthesized now has it
done by adding itself as an implicit use to defs other than the
dominant one.
Also added the following fixmes:
FIXME: We should detect whether a register in one of the above
categories is already live at the WWM code before deciding to add the
implicit uses to synthesize its liveness.
FIXME: I believe this whole scheme may be flawed due to the possibility
of the register allocator doing live interval splitting.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D46756
Change-Id: Ie7fba0ede0378849181df3f1a9a7a39ed1a94a94
llvm-svn: 338783
Summary:
This fixes a problem where a load from global+idx generated incorrect
code on <=gfx7 when the index is divergent.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47383
Change-Id: Ib4d177d6254b1dd3f8ec0203fdddec94bd8bc5ed
llvm-svn: 338779
This will remove suboptimal branching from the generated ll/sc loops.
The extra simplification pass affects a lot of testcases, which have
been modified to accommodate this change: either by modifying the
test to become immune to the CFG simplification, or (less preferablt)
by adding option -hexagon-initial-cfg-clenaup=0.
llvm-svn: 338774
Rather than allowing invalid bitcasts to be lowered to wasm
call instructions that won't validate, generate wrappers that
contain unreachable thereby delaying the error until runtime.
Differential Revision: https://reviews.llvm.org/D49517
llvm-svn: 338744
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.
Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.
Differential Revision: https://reviews.llvm.org/D50157
llvm-svn: 338735
As a part of adding the tiny codemodel, we need to support ldr's with :got:
relocations on them. This seems to be mostly already done, just needs the
relocation type support.
Differential Revision: https://reviews.llvm.org/D50137
llvm-svn: 338673
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
AArch64 ELF ABI does not define a static relocation type for TLS offset within
a module, which makes it impossible for compiler to generate a valid
DW_AT_location content for thread local variables. Currently LLVM generates an
invalid R_AARCH64_ABS64 relocation at the DW_AT_location field for a TLS
variable. That causes trouble for linker because thread local variable does
not have an absolute address at link time. AArch64 GCC solves the problem by
not generating DW_AT_location for thread local variables. We should do the
same in LLVM.
Differential Revision: https://reviews.llvm.org/D43860
llvm-svn: 338655
Mutate the node type during selection when it
doesn't matter. This avoids an intermediate bitcast
node on targets with legal i16/f16.
Also fixes missing output modifiers on v_cvt_pkrtz_f32_f16,
which I assume are OK.
llvm-svn: 338619
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).
Differential Revision: https://reviews.llvm.org/D50083
llvm-svn: 338586
Summary:
Add _L to _LZ image intrinsic table mapping to table gen.
In ISelLowering check if image intrinsic has lod and if it's equal
to zero, if so remove lod and change opcode to equivalent mapped _LZ.
Change-Id: Ie24cd7e788e2195d846c7bd256151178cbb9ec71
Subscribers: arsenm, mehdi_amini, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49483
llvm-svn: 338523
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
It's not strictly required by the transform of the cmov and the add, but it makes sure we restrict it to the cases we know we want to match.
While there canonicalize the operand order of the cmov to simplify the matching and emitting code.
llvm-svn: 338492
EFLAGS copy lowering.
If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.
Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).
The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...
It isn't though....
This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.
The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D
llvm-svn: 338481
Disable ARMCodeGenPrepare by default again. It is causing verifier
failues in V8 that look like:
Duplicate integer as switch case
switch i32 %trunc, label %if.end13 [
i32 0, label %cleanup36
i32 0, label %if.then8
], !dbg !4981
i32 0
fatal error: error in backend: Broken function found, compilation aborted!
I will continue reducing the test case and send it along.
llvm-svn: 338452
When lowering calling conventions, prefer to decompose vectors
into the constitute register types. This avoids artifical constraints
to satisfy a wide super-register.
This improves code quality because now optimizations don't need to
deal with the super-register constraint. For example the immediate
folding code doesn't deal with 4 component reg_sequences, so by
breaking the register down earlier the existing immediate folding
code is able to work.
This also avoids the need for the shader input processing code
to manually split vector types.
llvm-svn: 338416
Don't declare them as X86SchedWritePair when the folded class will never be used.
Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
As was done for vector rotations, we can efficiently use ISD::MULHU for vXi8/vXi16 ISD::SRL lowering.
Shift-by-zero cases are still problematic (mainly on v32i8 due to extra AND/ANDN/OR or VPBLENDVB blend masks but v8i16/v16i16 aren't great either if PBLENDW fails) so I've limited this first patch to known non-zero cases if we can't easily use PBLENDW.
Differential Revision: https://reviews.llvm.org/D49562
llvm-svn: 338407
Summary:
Similar to D49636, but for PMADDUBSW. This instruction has the additional complexity that the addition of the two products saturates to 16-bits rather than wrapping around. And one operand is treated as signed and the other as unsigned.
A C example that triggers this pattern
```
static const int N = 128;
int8_t A[2*N];
uint8_t B[2*N];
int16_t C[N];
void foo() {
for (int i = 0; i != N; ++i)
C[i] = MIN(MAX((int16_t)A[2*i]*(int16_t)B[2*i] + (int16_t)A[2*i+1]*(int16_t)B[2*i+1], -32768), 32767);
}
```
Reviewers: RKSimon, spatel, zvi
Reviewed By: RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49829
llvm-svn: 338402
This commit fixes two issues with the liveness information after the
call:
1) The code always spills RCX and RDX if InProlog == true, which results
in an use of undefined phys reg.
2) FinalReg, JoinReg, RoundedReg, SizeReg are not added as live-ins to
the basic blocks that use them, therefore they are seen undefined.
https://llvm.org/PR38376
Differential Revision: https://reviews.llvm.org/D50020
llvm-svn: 338400
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338387
We could choose a free 0 for this, but this
matches the behavior for fmul undef, 1.0. Also,
the NaN use is more useful for folding use operations
although if it's not eliminated it is more expensive
in terms of code size.
llvm-svn: 338376
This patch teaches llvm-mca how to identify dependency breaking instructions on
btver2.
An example of dependency breaking instructions is the zero-idiom XOR (example:
`XOR %eax, %eax`), which always generates zero regardless of the actual value of
the input register operands.
Dependency breaking instructions don't have to wait on their input register
operands before executing. This is because the computation is not dependent on
the inputs.
Not all dependency breaking idioms are also zero-latency instructions. For
example, `CMPEQ %xmm1, %xmm1` is independent on
the value of XMM1, and it generates a vector of all-ones.
That instruction is not eliminated at register renaming stage, and its opcode is
issued to a pipeline for execution. So, the latency is not zero.
This patch adds a new method named isDependencyBreaking() to the MCInstrAnalysis
interface. That method takes as input an instruction (i.e. MCInst) and a
MCSubtargetInfo.
The default implementation of isDependencyBreaking() conservatively returns
false for all instructions. Targets may override the default behavior for
specific CPUs, and return a value which better matches the subtarget behavior.
In future, we should teach to Tablegen how to automatically generate the body of
isDependencyBreaking from scheduling predicate definitions. This would allow us
to expose the knowledge about dependency breaking instructions to the machine
schedulers (and, potentially, other codegen passes).
Differential Revision: https://reviews.llvm.org/D49310
llvm-svn: 338372
Since z13, the max group size will be 2 if any μop has more than 3 register
sources.
This has been ignored sofar in the SystemZHazardRecognizer, but is now
handled by recognizing those instructions and adjusting the tracking of
decoding and the cost heuristic for grouping.
Review: Ulrich Weigand
https://reviews.llvm.org/D49847
llvm-svn: 338368
isFNEG was duplicating much of what was done by getTargetConstantBitsFromNode in its own calls to getTargetConstantFromNode.
Noticed while reviewing D48467.
llvm-svn: 338358
Contrary to ELF, we don't add any markers that distinguish data generated
with .short/.long from normal instructions, so the .inst directive only
adds compatibility with assembly that uses it.
Differential Revision: https://reviews.llvm.org/D49936
llvm-svn: 338356
Contrary to ELF, we don't add any markers that distinguish data generated
with .long from normal instructions, so the .inst directive only adds
compatibility with assembly that uses it.
Differential Revision: https://reviews.llvm.org/D49935
llvm-svn: 338355
In one place we checked X86Subtarget.slowLEA() to decide if the pass should run. But to decide what the pass should we only check isSLM. This resulted in Goldmont going down the Bonnell path.
llvm-svn: 338342
Also refactors some existing code to materialize addresses for the large code
model so it can be shared between G_GLOBAL_VALUE and G_BLOCK_ADDR.
This implements PR36390.
Differential Revision: https://reviews.llvm.org/D49903
llvm-svn: 338337
The vector contains the SDNodes that these functions create. The number of nodes is always a small number so we should use SmallVector to avoid a heap allocation.
llvm-svn: 338329
This teaches the outliner to save LR to a register rather than the stack when
possible. This allows us to avoid bumping the stack in outlined functions in
some cases. By doing this, in a later patch, we can teach the outliner to do
something like this:
f1:
...
bl OUTLINED_FUNCTION
...
f2:
...
move LR's contents to a register
bl OUTLINED_FUNCTION
move the register's contents back
instead of falling back to saving LR in both cases.
llvm-svn: 338278
This patch enables instructions that are destructive on their
destination- and first source operand, to be prefixed with a
MOVPRFX instruction.
This patch also adds a variety of tests:
- positive tests for all instructions and forms that accept a
movprfx for either or both predicated and unpredicated forms.
- negative tests for all instructions and forms that do not accept
an unpredicated or predicated movprfx.
- negative tests for the diagnostics that get emitted when a MOVPRFX
instruction is used incorrectly.
This is patch [2/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49593
llvm-svn: 338261
This patch adds predicated and unpredicated MOVPRFX instructions, which
can be prepended to SVE instructions that are destructive on their first
source operand, to make them a constructive operation, e.g.
add z1.s, p0/m, z1.s, z2.s <=> z1 = z1 + z2
can be made constructive:
movprfx z0, z1
add z0.s, p0/m, z0.s, z2.s <=> z0 = z1 + z2
The predicated MOVPRFX instruction can additionally be used to zero
inactive elements, e.g.
movprfx z0.s, p0/z, z1.s
add z0.s, p0/m, z0.s, z2.s
Not all instructions can be prefixed with the MOVPRFX instruction
which is why this patch also adds a mechanism to validate prefixed
instructions. The exact rules when a MOVPRFX applies is detailed in
the SVE supplement of the Architectural Reference Manual.
This is patch [1/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49592
llvm-svn: 338258
The machine verifier asserts with:
Assertion failed: (isMBB() && "Wrong MachineOperand accessor"), function getMBB, file ../include/llvm/CodeGen/MachineOperand.h, line 542.
It calls analyzeBranch which tries to call getMBB if the opcode is
JMP_1, but in this case we do:
JMP_1 @OUTLINED_FUNCTION
I believe we have to use TAILJMPd64 instead of JMP_1 since JMP_1 is used
with brtarget8.
Differential Revision: https://reviews.llvm.org/D49299
llvm-svn: 338237
Summary:
These instructions interact with hardware blocks outside the shader core,
and they can have "scalar" side effects even when EXEC = 0. We don't
want these scalar side effects to occur when all lanes want to skip
these instructions, so always add the execz skip branch instruction
for basic blocks that contain them.
Also ensure that we skip scalar stores / atomics, though we don't
code-gen those yet.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48431
Change-Id: Ieaeb58352e2789ffd64745603c14970c60819d44
llvm-svn: 338235
Code in `CC_ARM_AAPCS_Custom_Aggregate()` is responsible for handling
homogeneous aggregates for `CC_ARM_AAPCS_VFP`. When an aggregate ends up
fully on stack, the function tries to pack all resulting items of the
aggregate as tightly as possible according to AAPCS.
Once the first item was laid out, the alignment used for consecutive
items was the size of one item. This logic went wrong for 128-bit
vectors because their alignment is normally only 64 bits, and so could
result in inserting unexpected padding between the first and second
element.
The patch fixes the problem by updating the alignment with the item size
only if this results in reducing it.
Differential Revision: https://reviews.llvm.org/D49720
llvm-svn: 338233
The WHILE instructions generate a predicate that is true while the
comparison of the first scalar operand (incremented for each predicate
element) with the second scalar operand is true and false thereafter.
WHILELE While incrementing signed scalar less than or equal to scalar
WHILELO While incrementing unsigned scalar lower than scalar
WHILELS While incrementing unsigned scalar lower than or same as scalar
WHILELT While incrementing signed scalar less than scalar
e.g.
whilele p0.s, x0, x1
generates predicate p0 (for 32bit elements) by incrementing
(signed) x0 and comparing that vector to splat(x1).
llvm-svn: 338211
The instructions added in this patch permit active elements within
a vector to be processed sequentially without unpacking the vector.
PFIRST Set the first active element to true.
PNEXT Find next active element in predicate.
CTERMEQ Compare and terminate loop when equal.
CTERMNE Compare and terminate loop when not equal.
llvm-svn: 338210
X86 normally requires immediates to be a signed 32-bit value which would exclude i64 0x80000000. But for add/sub we can negate the constant and use the opposite instruction.
llvm-svn: 338204
This patch adds PFALSE (unconditionally sets all elements of
the predicate to false) and PTEST (set the status flags for the
predicate).
llvm-svn: 338198
SelectionDAGBuilder widens v3i32/v3f32 arguments to
to v4i32/v4f32 which consume an additional register.
In addition to wasting argument space, this produces extra
instructions since now it appears the 4th vector component has
a meaningful value to most combines.
llvm-svn: 338197
This patch adds support for instructions that partition a predicate
based on data-dependent termination conditions in a loop.
BRKA Break after the first true condition
BRKAS Break after the first true condition, setting condition flags
BRKB Break before the first true condition
BRKBS Break before the first true condition, setting condition flags
BRKPA Break after the first true condition, propagating from the
previous partition
BRKPAS Break after the first true condition, propagating from the
previous partition, setting condition flags
BRKPB Break before the first true condition, propagating from the
previous partition
BRKPBS Break before the first true condition, propagating from the
previous partition, setting condition flags
BRKN Propagate break to next partition
BKRNS Propagate break to next partition, setting condition flags
llvm-svn: 338196
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D49160
llvm-svn: 338164
Fixed the ASAN failure from before in r338148, so recommiting.
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338160
There was a missing check for if a candidate list was entirely deleted. This
adds that check.
This fixes an asan failure caused by running test/CodeGen/AArch64/addsub_ext.ll
with the MachineOutliner enabled.
llvm-svn: 338148
This feature enables the fusion of such operations on Cortex A57 and Cortex
A72, as recommended in their Software Optimisation Guides, sections 4.14 and
4.11, respectively.
Differential revision: https://reviews.llvm.org/D49563
llvm-svn: 338147
Errors like the following are reported by:
https://urldefense.proofpoint.com/v2/url?u=http-3A__lab.llvm.org-3A8011_builders_llvm-2Dclang-2Dx86-5F64-2Dexpensive-2Dchecks-2Dwin_builds_11261&d=DwIBAg&c=5VD0RTtNlTh3ycd41b3MUw&r=DA8e1B5r073vIqRrFz7MRA&m=929oWPCf7Bf2qQnir4GBtowB8ZAlIRWsAdTfRkDaK-g&s=9k-wbEUVpUm474hhzsmAO29VXVvbxJPWD9RTgCD71fQ&e=
*** Bad machine code: Explicit definition marked as use ***
- function: cal_align1
- basic block: %bb.0 entry (0x47edd98)
- instruction: LDB $r3, $r2, 0
- operand 0: $r3
This is because RegState info was missing for ScratchReg inside
expandMEMCPY. This caused incomplete register usage information to
MachineInstr verifier which then would complain as there could be potential
code-gen issue if the complained MachineInstr is used in place where
register usage information matters even though the memcpy expanding is not
in such case as it happens at the last stage of IR optimization pipeline.
We should always specify those register usage information which compiler
couldn't deduct automatically whenever we add a hardware register manually.
Reported-by: Builder llvm-clang-x86_64-expensive-checks-win Build #11261
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 338134
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338133
R600 can't handle immediates for BFE, these will be eliminated later.
Fixes powr/pow regressions n r600 since r334817
Differential Revision: https://reviews.llvm.org/D49641
llvm-svn: 338127
This patch adds support for various integer reduction operations:
SADDV signed add reduction to scalar
UADDV unsigned add reduction to scalar
SMAXV signed maximum reduction to scalar
SMINV signed minimum reduction to scalar
UMAXV unsigned maximum reduction to scalar
UMINV unsigned minimum reduction to scalar
ANDV logical AND reduction to scalar
ORV logical OR reduction to scalar
EORV logical EOR reduction to scalar
The reduction is predicated, e.g.
smaxv s0, p0, z1.s
performs a signed maximum reduction on active elements in z1,
and stores the (signed max value) result in s0.
llvm-svn: 338126
This patch adds support for various floating-point
reduction operations:
FADDA strictly-ordered add reduction, accumulating in scalar
FADDV recursive add reduction to scalar
FMAXV recursive max reduction to scalar
FMINV recursive min reduction to scalar
FMAXNMV recursive max number reduction to scalar
FMINNMV recursive min number reduction to scalar
The reduction is predicated, e.g.
fadda d0, p0, d0, z1.d
performs the add-reduction in strict order on active elements
in z1, accumulating into d0.
faddv d0, p0, z1.d
performs the add-reduction (not in strict order)
on active elements in z1, storing the result in d0.
llvm-svn: 338123
This patch adds support for transcendental acceleration
instructions 'FEXPA' (exponential accelerator) and 'FTSSEL'
(trigonometric select coefficient).
llvm-svn: 338121
Not sure why they were being explicitly excluded, but I believe all the math inside the if works. I changed the absolute value to be uint64_t instead of int64_t so INT64_MIN+1 wouldn't be signed wrap.
llvm-svn: 338101
Summary:
This is the pattern you get from the loop vectorizer for something like this
int16_t A[1024];
int16_t B[1024];
int32_t C[512];
void pmaddwd() {
for (int i = 0; i != 512; ++i)
C[i] = (A[2*i]*B[2*i]) + (A[2*i+1]*B[2*i+1]);
}
In this case we will have (add (mul (build_vector), (build_vector)), (mul (build_vector), (build_vector))). This is different than the pattern we currently match which has the build_vectors between an add and a single multiply. I'm not sure what C code would get you that pattern.
Reviewers: RKSimon, spatel, zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49636
llvm-svn: 338097
If this happens the operands aren't updated and the existing node is returned. Make sure we pass this existing node up to the DAG combiner so that a proper replacement happens. Otherwise we get stuck in an infinite loop with an unoptimized node.
llvm-svn: 338090
Scale the offset of VGPR spills by the wave size when it cannot fit in the
12-bit offset immediate field and so is added to the soffset SGPR. This
accounts for hardware swizzling of scratch memory.
Differential Revision: https://reviews.llvm.org/D49448
llvm-svn: 338060
- Save/restore only registers that are used.
This includes Callee saved registers and Caller saved registers
(arguments and temporaries) for integer and FP registers.
- If there is a call in the interrupt handler, save/restore all
Caller saved registers (arguments and temporaries) and all FP registers.
- Emit special return instructions depending on "interrupt"
attribute type.
Based on initial patch by Zhaoshi Zheng.
Reviewers: asb
Reviewed By: asb
Subscribers: rkruppe, the_o, MartinMosbeck, brucehoult, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, llvm-commits
Differential Revision: https://reviews.llvm.org/D48411
llvm-svn: 338047
Summary:
NVPTX target dos not use register-based frame information. Instead it
relies on the artificial local_depot that is used instead of the frame
and the data for variables must be emitted relatively to this
local_depot.
Reviewers: tra, jlebar, echristo
Subscribers: jholewinski, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45963
llvm-svn: 338039
- Some of the v8.3 pointer authentication instruction inhabit the Hint space
- These instructions can be assembled to hint instructions which act as NOP instructions prior to v8.3
- This patch permits using the hint instructions for all v8a targets
- Also, correct the RETA{A,B} instructions to match the instruction attributes of RET (set isTerminator and isBarrier)
Differential Revision: https://reviews.llvm.org/D49786
llvm-svn: 338029
Override getTypeForExtReturn so that functions returning
an i32 typed value have it sign extended on MIPS64.
Also provide patterns to get rid of unneeded sign extensions
for arithmetic instructions which implicitly sign extend
their results.
Differential Revision: https://reviews.llvm.org/D48374
llvm-svn: 338019
a helper function with a nice overview comment. NFC.
This is a preperatory refactoring to implementing another component of
mitigation here that was descibed in the design document but hadn't been
implemented yet.
llvm-svn: 338016
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010
I'm not sure if this was trying to avoid optimizing the new nodes further or what. Or maybe to prevent a cycle if something tried to reform the multiply? But I don't think its a reliable way to do that. If the user of the expanded multiply is visited by the DAGCombiner after this conversion happens, the DAGCombiner will check its operands, see that they haven't been visited by the DAGCombiner before and it will then add the first node to the worklist. This process will repeat until all the new nodes are visited.
So this seems like an unreliable prevention at best. So this patch just returns the new nodes like any other combine. If this starts causing problems we can try to add target specific nodes or something to more directly prevent optimizations.
Now that we handle the combine normally, we can combine any negates the mul expansion creates into their users since those will be visited now.
llvm-svn: 338007
These calls were making sure some newly created nodes were added to worklist, but the DAGCombiner has internal support for ensuring it has visited all nodes. Any time it visits a node it ensures the operands have been queued to be visited as well. This means if we only need to return the last new node. The DAGCombiner will take care of adding its inputs thus walking backwards through all the new nodes.
llvm-svn: 337996
- Avoid duplication of regmask size calculation.
- Simplify allocateRegisterMask() call.
- Rename allocateRegisterMask() to allocateRegMask() to be consistent
with naming in MachineOperand.
llvm-svn: 337986
Some BPF JIT backends would want to optimize memcpy in their own
architecture specific way.
However, at the moment, there is no way for JIT backends to see memcpy
semantics in a reliable way. This is due to LLVM BPF backend is expanding
memcpy into load/store sequences and could possibly schedule them apart from
each other further. So, BPF JIT backends inside kernel can't reliably
recognize memcpy semantics by peephole BPF sequence.
This patch introduce new intrinsic expand infrastructure to memcpy.
To get stable in-order load/store sequence from memcpy, we first lower
memcpy into BPF::MEMCPY node which then expanded into in-order load/store
sequences in expandPostRAPseudo pass which will happen after instruction
scheduling. By this way, kernel JIT backends could reliably recognize
memcpy through scanning BPF sequence.
This new memcpy expand infrastructure is gated by a new option:
-bpf-expand-memcpy-in-order
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 337977
In SVN r334523, the first half of comdat constant pool handling was
hoisted from X86WindowsTargetObjectFile (which despite the name only
was used for msvc targets) into the arch independent
TargetLoweringObjectFileCOFF, but the other half of the handling was
left behind in X86AsmPrinter::GetCPISymbol.
With only half of the handling in place, inconsistent comdat
sections/symbols are created, causing issues with both GNU binutils
(avoided for X86 in SVN r335918) and with the MS linker, which
would complain like this:
fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0x4
Differential Revision: https://reviews.llvm.org/D49644
llvm-svn: 337950
Saves materializing the immediate for the "ands".
Corresponding patterns exist for lsrs+lsls, but that seems less common
in practice.
Now implemented as a DAGCombine.
Differential Revision: https://reviews.llvm.org/D49585
llvm-svn: 337945
For example v = <2 x i1> is represented as bbbbaaaa in a predicate register,
where b = v[1], a = v[0]. Extracting v[1] is equivalent to extracting bit 4
from the predicate register.
llvm-svn: 337934
Add support for lowering pointer arguments.
Changing type from pointer to integer is already done in
MipsTargetLowering::getRegisterTypeForCallingConv.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D49419
llvm-svn: 337912
NFC changes to make scheduler TableGen files more readable, by using loops
instead of a lot of similar defs with just e.g. a latency value that changes.
https://reviews.llvm.org/D49598
Review: Ulrich Weigand, Javed Abshar
llvm-svn: 337909
code.
This consolidates all our hardening calls, and simplifies the code
a bit. It seems much more clear to handle all of these together.
No functionality changed here.
llvm-svn: 337895
This function actually does two things: it traces the predicate state
through each of the basic blocks in the function (as that isn't directly
handled by the SSA updater) *and* it hardens everything necessary in the
block as it goes. These need to be done together so that we have the
currently active predicate state to use at each point of the hardening.
However, this also made obvious that the flag to disable actual
hardening of loads was flawed -- it also disabled tracing the predicate
state across function calls within the body of each block. So this patch
sinks this debugging flag test to correctly guard just the hardening of
loads.
Unless load hardening was disabled, no functionality should change with
tis patch.
llvm-svn: 337894
The target independent AsmParser doesn't recognise .hword, .word, .dword
which are required for Mips. Currently MipsAsmParser recognises these
through dispatch to MipsAsmParser::parseDataDirective. This contains
equivalent logic to AsmParser::parseDirectiveValue. This patch allows
reuse of AsmParser::parseDirectiveValue by making use of
addAliasForDirective to support .hword, .word and .dword.
Original patch provided by Alex Bradbury at D47001 was modified to fix
handling of microMIPS symbols. The `AsmParser::parseDirectiveValue`
calls either `EmitIntValue` or `EmitValue`. In this patch we override
`EmitIntValue` in the `MipsELFStreamer` to clear a pending set of
microMIPS symbols.
Differential revision: https://reviews.llvm.org/D49539
llvm-svn: 337893
against v1.2 BCBS attacks directly.
Attacks using spectre v1.2 (a subset of BCBS) are described in the paper
here:
https://people.csail.mit.edu/vlk/spectre11.pdf
The core idea is to speculatively store over the address in a vtable,
jumptable, or other target of indirect control flow that will be
subsequently loaded. Speculative execution after such a store can
forward the stored value to subsequent loads, and if called or jumped
to, the speculative execution will be steered to this potentially
attacker controlled address.
Up until now, this could be mitigated by enableing retpolines. However,
that is a relatively expensive technique to mitigate this particular
flavor. Especially because in most cases SLH will have already mitigated
this. To fully mitigate this with SLH, we need to do two core things:
1) Unfold loads from calls and jumps, allowing the loads to be post-load
hardened.
2) Force hardening of incoming registers even if we didn't end up
needing to harden the load itself.
The reason we need to do these two things is because hardening calls and
jumps from this particular variant is importantly different from
hardening against leak of secret data. Because the "bad" data here isn't
a secret, but in fact speculatively stored by the attacker, it may be
loaded from any address, regardless of whether it is read-only memory,
mapped memory, or a "hardened" address. The only 100% effective way to
harden these instructions is to harden the their operand itself. But to
the extent possible, we'd like to take advantage of all the other
hardening going on, we just need a fallback in case none of that
happened to cover the particular input to the control transfer
instruction.
For users of SLH, currently they are paing 2% to 6% performance overhead
for retpolines, but this mechanism is expected to be substantially
cheaper. However, it is worth reminding folks that this does not
mitigate all of the things retpolines do -- most notably, variant #2 is
not in *any way* mitigated by this technique. So users of SLH may still
want to enable retpolines, and the implementation is carefuly designed to
gracefully leverage retpolines to avoid the need for further hardening
here when they are enabled.
Differential Revision: https://reviews.llvm.org/D49663
llvm-svn: 337878
We generated a subtract for the power of 2 minus one then negated the result. The negate can be optimized away by swapping the subtract operands, but DAG combine doesn't know how to do that and we don't add any of the new nodes to the worklist anyway.
This patch makes use explicitly emit the swapped subtract.
llvm-svn: 337858
Use a left shift and 2 subtracts like we do for 30. Move this out from behind the slow lea check since it doesn't even use an LEA.
Use this for multiply by 14 as well.
llvm-svn: 337856
Just some gardening here.
Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.
Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.
llvm-svn: 337848
When building with LTO, builtin functions that are defined but whose calls have not been inserted yet, get internalized. The Global Dead Code Elimination phase in the new LTO implementation then removes these function definitions. Later optimizations add calls to those functions, and the linker then dies complaining that there are no definitions. This CL fixes the new LTO implementation to check if a function is builtin, and if so, to not internalize (and later DCE) the function. As part of this fix I needed to move the RuntimeLibcalls.{def,h} files from the CodeGen subidrectory to the IR subdirectory. I have updated all the files that accessed those two files to access their new location.
Fixes PR34169
Patch by Caroline Tice!
Differential Revision: https://reviews.llvm.org/D49434
llvm-svn: 337847
Summary:
Enabling this fully exposes a latent bug in the instruction folding: we
never update the register constraints for the register operands when
fusing a load into another operation. The fused form could, in theory,
have different register constraints on its operands. And in fact,
TCRETURNm* needs its memory operands to use tailcall compatible
registers.
I've updated the folding code to re-constrain all the registers after
they are mapped onto their new instruction.
However, we still can't enable folding in the general case from
TCRETURNr* to TCRETURNm* because doing so may require more registers to
be available during the tail call. If the call itself uses all but one
register, and the folded load would require both a base and index
register, there will not be enough registers to allocate the tail call.
It would be better, IMO, to teach the register allocator to *unfold*
TCRETURNm* when it runs out of registers (or specifically check the
number of registers available during the TCRETURNr*) but I'm not going
to try and solve that for now. Instead, I've just blocked the forward
folding from r -> m, leaving LLVM free to unfold from m -> r as that
doesn't introduce new register pressure constraints.
The down side is that I don't have anything that will directly exercise
this. Instead, I will be immediately using this it my SLH patch. =/
Still worse, without allowing the TCRETURNr* -> TCRETURNm* fold, I don't
have any tests that demonstrate the failure to update the memory operand
register constraints. This patch still seems correct, but I'm nervous
about the degree of testing due to this.
Suggestions?
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49717
llvm-svn: 337845
Before this, TCI contained all the call information for each Candidate.
This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.
A follow-up patch for the AArch64 outliner will demonstrate this.
llvm-svn: 337840
For the final DTPREL addition, rather than a lui/daddiu/daddu triple,
LLVM was erronously emitting a daddiu/daddiu pair, treating the %dtprel_hi
as if it were a %dtprel_lo, since Mips::Hi expands unshifted for Sym64.
Instead, use a new TlsHi node and, although unnecessary due to the exact
structure of the nodes emitted, use TlsHi for local exec too to prevent
future bugs. Also garbage-collect the unused TprelLo and TlsGd nodes,
and TprelHi since its functionality is provided by the new common TlsHi node.
Patch by James Clarke.
Differential revision: https://reviews.llvm.org/D49259
llvm-svn: 337827
helper and restructure the post-load hardening to use this.
This isn't as trivial as I would have liked because the post-load
hardening used a trick that only works for it where it swapped in
a temporary register to the load rather than replacing anything.
However, there is a simple way to do this without that trick that allows
this to easily reuse a friendly API for hardening a value in a register.
That API will in turn be usable in subsequent patcehs.
This also techincally changes the position at which we insert the subreg
extraction for the predicate state, but that never resulted in an actual
instruction and so tests don't change at all.
llvm-svn: 337825
ARM Stage 2 builders have been suspiciously broken since the pass was
committed. Disabling to hopefully fix the bots and give me time to
debug.
llvm-svn: 337821
Summary:
We were marking G_EXTRACT operations unsupported if the output type
was larger than the input type. I don't see how this could ever actually
happen, so I dropped the constraint. Doing this makes it possible to
reuse the same legality code for G_INSERT.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, rovka, kristof.beyls, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49600
llvm-svn: 337794
This code was really nasty, had several bugs in it originally, and
wasn't carrying its weight. While on Zen we have all 4 ports available
for SHRX, on all of the Intel parts with Agner's tables, SHRX can only
execute on 2 ports, giving it 1/2 the throughput of OR.
Worse, all too often this pattern required two SHRX instructions in
a chain, hurting the critical path by a lot.
Even if we end up needing to safe/restore EFLAGS, that is no longer so
bad. We pay for a uop to save the flag, but we very likely get fusion
when it is used by forming a test/jCC pair or something similar. In
practice, I don't expect the SHRX to be a significant savings here, so
I'd like to avoid the complex code required. We can always resurrect
this if/when someone has a specific performance issue addressed by it.
llvm-svn: 337781
This matches the structure used on X86 and ARM. This requires
a little bit of duplication of the parts that are equal in both
AArch64 COFF variants though.
Before SVN r335286, these classes didn't add anything that MCAsmInfoCOFF
didn't, but now they do.
This makes AArch64 match X86 in how comdat is used for float constants
for MinGW.
Differential Revision: https://reviews.llvm.org/D49637
llvm-svn: 337755
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.
llvm-svn: 337740
Summary:
OpChain has subclasses, so add a virtual destructor.
This fixes an issue when deleting subclasses of OpChain (see MatchSMLAD() specifically) in r337701.
Reviewers: javed.absar
Subscribers: llvm-commits, SjoerdMeijer, samparker
Differential Revision: https://reviews.llvm.org/D49681
llvm-svn: 337713
In preparing to allow ARMParallelDSP pass to parallelise more than
smlads, I've restructed some elements:
- The ParallelMAC struct has been renamed to BinOpChain.
- The BinOpChain struct holds two value lists: LHS and RHS, as well
as inheriting from the OpChain base class.
- The OpChain struct holds all the values of the represented chain
and has had the memory locations functionality inserted into it.
- ParallelMACList becomes OpChainList and it now holds pointers
instead of objects.
Differential Revision: https://reviews.llvm.org/D49020
llvm-svn: 337701
Two minor issues: The new MCD SchedWrite name does not contain "Unit" like
all the others, so a check is needed. Also, print "LSU" instead of "LS".
Review: Ulrich Weigand
llvm-svn: 337700
Arm specific codegen prepare is implemented to perform type promotion
on icmp operands, which can enable the removal of uxtb and uxth
(unsigned extend) instructions. This is possible because performing
type promotion before ISel alleviates this duty from the DAG builder
which has to perform legalisation, but has a limited view on data
ranges.
The pass visits any instruction operand of an icmp and creates a
worklist to traverse the use-def tree to determine whether the values
can simply be promoted. Our concern is values in the registers
overflowing the narrow (i8, i16) data range, so instructions marked
with nuw can be promoted easily. For add and sub instructions, we are
able to use the parallel dsp instructions to operate on scalar data
types and avoid overflowing bits. Underflowing adds and subs are also
permitted when the result is only used by an unsigned icmp.
Differential Revision: https://reviews.llvm.org/D48832
llvm-svn: 337687
Summary:
Pretty mechanical follow-up for D49196.
As microarchitecture.pdf notes, "20 AMD Ryzen pipeline",
"20.8 Register renaming and out-of-order schedulers":
The integer register file has 168 physical registers of 64 bits each.
The floating point register file has 160 registers of 128 bits each.
"20.14 Partial register access":
The processor always keeps the different parts of an integer register together.
...
An instruction that writes to part of a register will therefore have a false dependence
on any previous write to the same register or any part of it.
Reviewers: andreadb, courbet, RKSimon, craig.topper, GGanesh
Reviewed By: GGanesh
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D49393
llvm-svn: 337676
a call, and then again as a return.
Also added a comment to try and explain better why we would be doing
what we're doing when hardening the (non-call) returns.
llvm-svn: 337673
This provides an overview of the algorithm used to harden specific
loads. It also brings this our terminology further in line with
hardening rather than checking.
Differential Revision: https://reviews.llvm.org/D49583
llvm-svn: 337667
This seems to be a net improvement. There's still an issue under avx512f where we have a 512-bit vpaddd, but not vpmaddwd so we end up doing two 256-bit vpmaddwds and inserting the results before a 512-bit vpaddd. It might be better to do two 512-bits paddds with zeros in the upper half. Same number of instructions, but breaks a dependency.
llvm-svn: 337656
This is a follow-up to the rL335185. Those commit adds some WrapperPat
patterns for microMIPS target. But declaration of the WrapperPat class
is under the NotInMicroMips predicate and microMIPS patterns cannot be
selected because predicate (Subtarget->inMicroMipsMode()) &&
(!Subtarget->inMicroMipsMode()) is always false.
This change move out the WrapperPat class declaration from the
NotInMicroMips predicate and enables microMIPS WrapperPat patterns.
Differential revision: https://reviews.llvm.org/D49533
llvm-svn: 337646
Ideally our ISD node types going into the isel table would have types consistent with their instruction domain. This prevents us having to duplicate patterns with different types for the same instruction.
Unfortunately, it seems our shuffle combining is currently relying on this a little remove some bitcasts. This seems to enable some switching between shufps and shufd. Hopefully there's some way we can address this in the combining.
Differential Revision: https://reviews.llvm.org/D49280
llvm-svn: 337590
CombineTo is most useful when you need to replace multiple results, avoid the worklist management, or you need to something else after the combine, etc. Otherwise you should be able to just return the new node and let DAGCombiner go through its usual worklist code.
All of the places changed in this patch look to be standard cases where we should be able to use the more stand behavior of just returning the new node.
Differential Revision: https://reviews.llvm.org/D49569
llvm-svn: 337589
We can safely use getConstant here as we're still lowering, which allows constant folding to kick in and simplify the vector shift codegen.
Noticed while working on D49562.
llvm-svn: 337578
Enable the optimization of operations on DPR and SPR via a feature instead
of checking the target.
Differential revision: https://reviews.llvm.org/D49463
llvm-svn: 337575
This is an early step towards using SimplifyDemandedVectorElts for target shuffle combining - this merely moves the existing X86ISD::VBROADCAST simplification code to use the SimplifyDemandedVectorElts mechanism.
Adds X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode to handle X86ISD::VBROADCAST - in time we can support all target shuffles (and other ops) here.
llvm-svn: 337547
As a consequence of recent discussions
(http://lists.llvm.org/pipermail/llvm-dev/2018-May/123164.html), this patch
changes the SystemZ SchedModels so that the IssueWidth is 6, which is the
decoder capacity, and NumMicroOps become the number of decoder slots needed
per instruction.
In addition, the SchedWrite latencies now match the MachineInstructions
def-operand indexes, and ReadAdvances have been added on instructions with
one register operand and one memory operand.
Review: Ulrich Weigand
https://reviews.llvm.org/D47008
llvm-svn: 337538
This patch adds the following instructions:
RBIT reverse bits within each active elemnt (predicated), e.g.
rbit z0.d, p0/m, z1.d
for 8, 16, 32 and 64 bit elements.
REV reverse order of elements in data/predicate vector
(unpredicated), e.g.
rev z0.d, z1.d
rev p0.d, p1.d
for 8, 16, 32 and 64 bit elements.
REVB reverse order of bytes within each active element, e.g.
revb z0.d, p0/m, z1.d
for 16, 32 and 64 bit elements.
REVH reverse order of 16-bit half-words within each active
element, e.g.
revh z0.d, p0/m, z1.d
for 32 and 64 bit elements.
REVW reverse order of 32-bit words within each active element,
e.g.
revw z0.d, p0/m, z1.d
for 64 bit elements.
llvm-svn: 337534
Summary:
lifetime2.C violates DR1696, which prevents reference members from being
initialized to temporaries, whose lifetime would end at the end of ctor.
Reviewers: sbc100
Subscribers: dschuff, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D49577
llvm-svn: 337512
remove dead declaration of a call instruction handling helper.
This moves to the 'harden' terminology that I've been trying to settle
on for returns. It also adds a really detailed comment explaining what
all we're trying to accomplish with return instructions and why.
Hopefully this makes it much more clear what exactly is being
"hardened".
Differential Revision: https://reviews.llvm.org/D49571
llvm-svn: 337510