The error reported the number of explicit operands,
but that isn't what is checked. In my case, this
resulted in the confusing errors
"Too few operands." followed shortly by
"8 operands expected, but 8 given."
llvm-svn: 194862
The Segment struct contains a single interval; multiple instances of this struct
are used to construct a live range, but the struct is not a live range by
itself.
llvm-svn: 192392
1> on every path through the CFG, a FrameSetup <n> is always followed by a
FrameDestroy <n> and a FrameDestroy is always followed by a FrameSetup.
2> stack adjustments are identical on all CFG edges to a merge point.
3> frame is destroyed at end of a return block.
PR16393
llvm-svn: 186350
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
the MachineInstr MayLoad/MayLoad flags are based on the tablegen implementation.
For inline assembly, however, we need to compute these based on the constraints.
Revert r166929 as this is no longer needed, but leave the test case in place.
rdar://12033048 and PR13504
llvm-svn: 167040
The operands on an INLINEASM machine instruction are divided into groups
headed by immediate flag operands. Verify this structure.
Extract verifyTiedOperands(), and only call it for non-inlineasm
instructions.
llvm-svn: 162849
WHen running with -verify-machineinstrs, check that tied operands come
in matching use/def pairs, and that they are consistent with MCInstrDesc
when it applies.
llvm-svn: 162816
IR that hasn't been through SimplifyCFG can look like this:
br i1 %b, label %r, label %r
Make sure we don't create duplicate Machine CFG edges in this case.
Fix the machine code verifier to accept conditional branches with a
single CFG edge.
llvm-svn: 162230
Verify that all paths from the entry block to a virtual register read
pass through a def. Enable this check even when MRI->isSSA() is false.
Verify that the live range of a virtual register is live out of all
predecessor blocks, even for PHI-values.
This requires that PHIElimination sometimes inserts IMPLICIT_DEF
instruction in predecessor blocks.
llvm-svn: 159150
Bundles should be treated as one atomic transaction when checking
liveness. That is how the register allocator (and VLIW targets) treats
bundles.
llvm-svn: 158116
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
llvm-svn: 156328
The late scheduler depends on accurate liveness information if it is
breaking anti-dependencies, so we should be able to verify it.
Relax the terminator checking in the machine code verifier so it can
handle the basic blocks created by if conversion.
llvm-svn: 153614
Extract the liveness verification into its own method.
This makes it possible to run the machine code verifier after liveness
information is no longer required to be valid.
llvm-svn: 153596