This is no-outwardly-visible-change intended, so no test.
But the code is smaller and more efficient. The check for
a 'not' op is intended to avoid the expensive value tracking
call when it should not be necessary, and it might prevent
infinite looping when we resurrect:
rL300977
llvm-svn: 341280
Leverage existing logic in constant hoisting pass to transform constant GEP
expressions sharing the same base global variable. Multi-dimensional GEPs are
rewritten into single-dimensional GEPs.
Differential Revision: https://reviews.llvm.org/D51396
llvm-svn: 341269
Generalize the simplification of `pow(2.0, y)` to `pow(2.0 ** n, y)` for all
scalar and vector types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D49273
llvm-svn: 341095
Splitting an alloca can decrease the alignment of GEPs into the
partition. Normally, rewriting accounts for this, but the code was
missing for uses of PHI nodes and select instructions.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38707 .
Differential Revision: https://reviews.llvm.org/D51335
llvm-svn: 341094
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Patch By: metzman
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: #sanitizers, delcypher, morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 341082
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.
Patch by: Simon Moll
Reviewed By: nhaehnle
Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50434
Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
This reverts commit r340997.
This change turned out not to be NFC after all, but e.g. causes
clang to crash when building the linux kernel for aarch64.
llvm-svn: 341031
These classes don't make any changes to IR and have no reason to be in
Transform/Utils. This patch moves them to Analysis folder. This will allow
us reusing these classes in some analyzes, like MustExecute.
llvm-svn: 341015
rL340921 has been reverted by rL340923 due to linkage dependency
from Transform/Utils to Analysis which is not allowed. In this patch
this has been fixed, a new utility function moved to Analysis.
Differential Revision: https://reviews.llvm.org/D51152
llvm-svn: 341014
The cost modeling was not accounting for the fact we were duplicating the instruction once per predecessor. With a default threshold of 1, this meant we were actually creating #pred copies.
Adding to the fun, there is *absolutely no* test coverage for this. Simply bailing for more than one predecessor passes all checked in tests.
llvm-svn: 341001
Teach LICM to hoist stores out of loops when the store writes to a location otherwise unused in the loop, writes a value which is invariant, and is guaranteed to execute if the loop is entered.
Worth noting is that this transformation is partially overlapping with the existing promotion transformation. Reasons this is worthwhile anyway include:
* For multi-exit loops, this doesn't require duplication of the store.
* It kicks in for case where we can't prove we exit through a normal exit (i.e. we may throw), but can prove the store executes before that possible side exit.
Differential Revision: https://reviews.llvm.org/D50925
llvm-svn: 340974
Summary:
Assert from PR38737 happens on the dead block inside the parent loop
after unswitching nontrivial switch in the inner loop.
deleteDeadBlocksFromLoop now takes extra care to detect/remove dead
blocks in all the parent loops in addition to the blocks from original
loop being unswitched.
Reviewers: asbirlea, chandlerc
Reviewed By: asbirlea
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51415
llvm-svn: 340955
This is a follow-up to rL339604 which did the same transform
for a sin libcall. The handling of intrinsics vs. libcalls
is unfortunately scattered, so I'm just adding this next to
the existing transform for llvm.cos for now.
This should resolve PR38458:
https://bugs.llvm.org/show_bug.cgi?id=38458
If the call was already negated, the negates will cancel
each other out.
llvm-svn: 340952
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: #sanitizers, delcypher, morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 340949
Expand the simplification of `pow(exp{,2}(x), y)` to all FP types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D51195
llvm-svn: 340948
Generalize the simplification of `pow(2.0, y)` to `pow(2.0 ** n, y)` for all
scalar and vector types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D49273
llvm-svn: 340947
We were calling getNumUses to check for 1 or 2 uses. But getNumUses is linear in the number of uses. We can instead use !hasNUsesOrMore(3) which will stop the linear scan as soon as it determines there are at least 3 uses even if there are more.
llvm-svn: 340939
Rebase rL338240 since the excessive memory usage observed when using
GVNHoist with UBSan has been fixed by rL340818.
Differential Revision: https://reviews.llvm.org/D49858
llvm-svn: 340922
We have multiple places in code where we try to identify whether or not
some instruction is a guard. This patch factors out this logic into a separate
utility function which works uniformly in all places.
Differential Revision: https://reviews.llvm.org/D51152
Reviewed By: fedor.sergeev
llvm-svn: 340921
This patch creates file GuardUtils which will contain logic for work with guards
that can be shared across different passes.
Differential Revision: https://reviews.llvm.org/D51151
Reviewed By: fedor.sergeev
llvm-svn: 340914
In the PR, LoopSink was trying to sink into a catchswitch block, which
doesn't have a valid insertion point.
Differential Revision: https://reviews.llvm.org/D51307
llvm-svn: 340900
In Thumb1, legal imm range is [0, 255] for ADD/SUB instructions. However, the
legal imm range for LD/ST in (R+Imm) addressing mode is [0, 127]. Imms in
[128, 255] are materialized by mov R, #imm, and LD/STs use them in (R+R)
addressing mode.
This patch checks if a constant is used as offset in (R+Imm), if so, it checks
isLegalAddressingMode passing the constant value as BaseOffset.
Differential Revision: https://reviews.llvm.org/D50931
llvm-svn: 340882
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Patch By: metzman
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 340860
Summary:
Sometimes reading an output *.ll file it is not easy to understand why some callsites are not inlined. We can read output of inline remarks (option --pass-remarks-missed=inline) and try correlating its messages with the callsites.
An easier way proposed by this patch is to add to every callsite processed by Inliner an attribute with the latest message that describes the cause of not inlining this callsite. The attribute is called //inline-remark//. By default this feature is off. It can be switched on by the option //-inline-remark-attribute//.
For example in the provided test the result method //@test1// has two callsites //@bar// and inline remarks report different inlining missed reasons:
remark: <unknown>:0:0: bar not inlined into test1 because too costly to inline (cost=-5, threshold=-6)
remark: <unknown>:0:0: bar not inlined into test1 because it should never be inlined (cost=never): recursive
It is not clear which remark correspond to which callsite. With the inline remark attribute enabled we get the reasons attached to their callsites:
define void @test1() {
call void @bar(i1 true) #0
call void @bar(i1 false) #2
ret void
}
attributes #0 = { "inline-remark"="(cost=-5, threshold=-6)" }
..
attributes #2 = { "inline-remark"="(cost=never): recursive" }
Patch by: yrouban (Yevgeny Rouban)
Reviewers: xbolva00, tejohnson, apilipenko
Reviewed By: xbolva00, tejohnson
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D50435
llvm-svn: 340834
Summary:
This fixes PR31105.
There is code trying to delete dead code that does so by e.g. checking if
the single predecessor of a block is the block itself.
That check fails on a block like this
bb:
br i1 undef, label %bb, label %bb
since that has two (identical) predecessors.
However, after the check for dead blocks there is a call to
ConstantFoldTerminator on the basic block, and that call simplifies the
block to
bb:
br label %bb
Therefore we now do the call to ConstantFoldTerminator before the check if
the block is dead, so it can realize that it really is.
The original behavior lead to the block not being removed, but it was
simplified as above, and then we did a call to
Dest->replaceAllUsesWith(&*I);
with old and new being equal, and an assertion triggered.
Reviewers: chandlerc, fhahn
Reviewed By: fhahn
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D51280
llvm-svn: 340820
Fix for the out-of-memory error when compiling SemaChecking.cpp
with GVNHoist and ubsan enabled. I've used a cache for inserted
CHIs to avoid excessive memory usage.
Differential Revision: https://reviews.llvm.org/D50323
llvm-svn: 340818
This lines up with the behavior of an existing transform where if both
operands of the binop are shuffled, we allow moving the binop before the
shuffle regardless of whether the shuffle changes the size of the vector.
llvm-svn: 340787
Fix the issue of duplicating the call to `exp{,2}()` when it's nested in
`pow()`, as exposed by rL340462.
Differential revision: https://reviews.llvm.org/D51194
llvm-svn: 340784
We have a class `ImplicitControlFlowTracking` which allows us to keep track of
instructions that can abnormally exit and answer queries like "whether or not
there is side-exiting instruction above this instruction in its block".
We may want to have the similar tracking for other types of "special" instructions,
for example instructions that write memory.
This patch separates ImplicitControlFlowTracking into two classes, isolating all
general logic not related to implicit control flow into its parent class. We can
later make another child of this class to keep track of instructions that write
memory.
The motivation for that is that we want to make these checks efficiently in the
patch https://reviews.llvm.org/D50891.
NOTE: The naming of the parent class is not super cool, but the other options we
have are hardly better. Please feel free to rename it as NFC if you think you've
found a more informative name for it.
Differential Revision: https://reviews.llvm.org/D50954
Reviewed By: fedor.sergeev
llvm-svn: 340728
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
`isExceptionalTermiantor` and implement it for opcodes as well following
the common pattern in `Instruction`.
Part of removing `TerminatorInst` from the `Instruction` type hierarchy
to make it easier to share logic and interfaces between instructions
that are both terminators and not terminators.
llvm-svn: 340699
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
Summary:
Sometimes reading an output *.ll file it is not easy to understand why some callsites are not inlined. We can read output of inline remarks (option --pass-remarks-missed=inline) and try correlating its messages with the callsites.
An easier way proposed by this patch is to add to every callsite processed by Inliner an attribute with the latest message that describes the cause of not inlining this callsite. The attribute is called //inline-remark//. By default this feature is off. It can be switched on by the option //-inline-remark-attribute//.
For example in the provided test the result method //@test1// has two callsites //@bar// and inline remarks report different inlining missed reasons:
remark: <unknown>:0:0: bar not inlined into test1 because too costly to inline (cost=-5, threshold=-6)
remark: <unknown>:0:0: bar not inlined into test1 because it should never be inlined (cost=never): recursive
It is not clear which remark correspond to which callsite. With the inline remark attribute enabled we get the reasons attached to their callsites:
define void @test1() {
call void @bar(i1 true) #0
call void @bar(i1 false) #2
ret void
}
attributes #0 = { "inline-remark"="(cost=-5, threshold=-6)" }
..
attributes #2 = { "inline-remark"="(cost=never): recursive" }
Patch by: yrouban (Yevgeny Rouban)
Reviewers: xbolva00, tejohnson, apilipenko
Reviewed By: xbolva00, tejohnson
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D50435
llvm-svn: 340618
Once the invariant_start is reached, we know that no instruction *after* it can modify the memory. So, if we can prove the location isn't read *between entry into the loop and the execution of the invariant_start*, we can execute the invariant_start before entering the loop.
Differential Revision: https://reviews.llvm.org/D51181
llvm-svn: 340617
This patch makes the DoesKMove argument non-optional, to force people
to think about it. Most cases where it is false are either code hoisting
or code sinking, where we pick one instruction from a set of
equal instructions among different code paths.
Reviewers: dberlin, nlopes, efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47475
llvm-svn: 340606
Summary:
Avoid "count" if possible -> use "find" to check for the existence of keys.
Passed llvm test suite.
Reviewers: fhahn, dcaballe, mkuper, rengolin
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51054
llvm-svn: 340563
These changes expand the FunctionAttr logic in order to mark functions as
WriteOnly when appropriate. This is done through an additional bool variable
and extended logic.
Reviewers: hfinkel, jdoerfert
Differential Revision: https://reviews.llvm.org/D48387
llvm-svn: 340537
When GVN sets the incoming value for a phi to undef because the incoming block
is unreachable it needs to also invalidate the cached info for that phi in
MemoryDependenceAnalysis, otherwise later queries will return stale information.
Differential Revision: https://reviews.llvm.org/D51099
llvm-svn: 340529
This version of the patch fixes cleaning up ssa_copy intrinsics, so it does not
crash for instructions in blocks that have been marked unreachable.
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 340525
Most users won't have to worry about this as all of the
'getOrInsertFunction' functions on Module will default to the program
address space.
An overload has been added to Function::Create to abstract away the
details for most callers.
This is based on https://reviews.llvm.org/D37054 but without the changes to
make passing a Module to Function::Create() mandatory. I have also added
some more tests and fixed the LLParser to accept call instructions for
types in the program address space.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D47541
llvm-svn: 340519
Summary:
Add MemorySSA as a dependency to LoopSimplifyCFG and preserve it.
Disabled by default until all passes preserve MemorySSA.
Reviewers: bogner, chandlerc
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D50911
llvm-svn: 340445
Summary:
Add MemorySSA as a depency to LoopInstInstSimplify and preserve it.
Disabled by default until all passes preserve MemorySSA.
Reviewers: chandlerc
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D50906
llvm-svn: 340444
Guard widening should not spend efforts on dealing with guards with trivial true/false conditions.
Such guards can easily be eliminated by any further cleanup pass like instcombine. However we
should not unconditionally delete them because it may be profitable to widen other conditions
into such guards.
Differential Revision: https://reviews.llvm.org/D50247
Reviewed By: fedor.sergeev
llvm-svn: 340381
Currently CodeExtractor tries to use the next node after an invoke to
place the store for the result of the invoke, if it is an out parameter
of the region. This fails, as the invoke terminates the current BB.
In that case, we can place the store in the 'normal destination' BB, as
the result will only be available in that case.
Reviewers: davidxl, davide, efriedma
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D51037
llvm-svn: 340331
I'm assuming its easier to make sure the RHS of an XOR is all ones than it is to check for the many select patterns we have. So lets check that first. Same with the one use check.
llvm-svn: 340321
Currently we assign the same value number to two calls reading the same
memory location if we do not have MemoryDependence info. Without MemDep
Info we cannot guarantee that there is no store between the two calls, so we
have to assign a new number to the second call.
It also adds a new option EnableMemDep to enable/disable running
MemoryDependenceAnalysis and also renamed NoLoads to NoMemDepAnalysis to
be more explicit what it does. As it also impacts calls that read memory,
NoLoads is a bit confusing.
Reviewers: efriedma, sebpop, john.brawn, wmi
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D50893
llvm-svn: 340319
Volatility is not an aliasing property. We used to model volatile as if it had extremely conservative aliasing implications, but that hasn't been true for several years now. So, it doesn't make sense to be in AliasSet.
It also turns out the code is entirely a noop. Outside of the AST code to update it, there was only one user: load store promotion in LICM. L/S promotion doesn't need the check since it walks all the users of the address anyway. It already checks each load or store via !isUnordered which causes us to bail for volatile accesses. (Look at the lines immediately following the two remove asserts.)
There is the possibility of some small compile time impact here, but the only case which will get noticeably slower is a loop with a large number of loads and stores to the same address where only the last one we inspect is volatile. This is sufficiently rare it's not worth optimizing for..
llvm-svn: 340312
DAGCombiner doesn't pay attention to whether constants are opaque before doing the div by constant optimization. So BypassSlowDivision shouldn't introduce control flow that would make DAGCombiner unable to see an opaque constant. This can occur when a div and rem of the same constant are used in the same basic block. it will be hoisted, but not leave the block.
Longer term we probably need to look into the X86 immediate cost model used by constant hoisting and maybe not mark div/rem immediates for hoisting at all.
This fixes the case from PR38649.
Differential Revision: https://reviews.llvm.org/D51000
llvm-svn: 340303
Summary:
Follow up change to rL339703, where we now vectorize loops with non-phi
instructions used outside the loop. Note that the cyclic dependency
identification occurs when identifying reduction/induction vars.
We also need to identify that we do not allow users where the PSCEV information
within and outside the loop are different. This was the fix added in rL307837
for PR33706.
Reviewers: Ayal, mkuper, fhahn
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D50778
llvm-svn: 340278
This patch teaches LICM to hoist guards from the loop if they are guaranteed to execute and
if there are no side effects that could prevent that.
Differential Revision: https://reviews.llvm.org/D50501
Reviewed By: reames
llvm-svn: 340256
If we can use comdats, then we can make it so that the global metadata
is thrown away if the prevailing definition of the global was
uninstrumented. I have only tested this on COFF targets, but in theory,
there is no reason that we cannot also do this for ELF.
This will allow us to re-enable string merging with ASan on Windows,
reducing the binary size cost of ASan on Windows.
I tested this change with ASan+PGO, and I fixed an issue with the
__llvm_profile_raw_version symbol. With the old version of my patch, we
would attempt to instrument that symbol on ELF because it had a comdat
with external linkage. If we had been using the linker GC-friendly
metadata scheme, everything would have worked, but clang does not enable
it by default.
llvm-svn: 340232
Summary:
Adds the option for the printing of summary information about functions
considered but rejected for importing during the thin link.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D50881
llvm-svn: 340047
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
Summary:
Currently, in LICM, we use the alias set tracker to identify if the
instruction (we're interested in hoisting) aliases with instruction that
modifies that memory location.
This patch adds an LICM alias analysis diagnostic tool that checks the
mod ref info of the instruction we are interested in hoisting/sinking,
with every instruction in the loop. Because of O(N^2) complexity this
is now only a diagnostic tool to show the limitation we have with the
alias set tracker and is OFF by default.
Test cases show the difference with the diagnostic analysis tool, where
we're able to hoist out loads and readonly + argmemonly calls from the
loop, where the alias set tracker analysis is not able to hoist these
instructions out.
Reviewers: reames, mkazantsev, fedor.sergeev, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50854
llvm-svn: 340026
This commit fixes a (gcc 7.3.0) [-Wunused-function] warning caused by the
presence of unused method FaddCombine::createFDiv().
The last use of that method was removed at r339519.
llvm-svn: 340014
This is a follow-up suggested with rL339604.
For tan(), we don't have a corresponding LLVM
intrinsic -- unlike sin/cos -- so this is the
only way/place that we can do this fold currently.
llvm-svn: 339958
Thread sanitizer instrumentation fails to skip all loads and stores to
profile counters. This can happen if profile counter updates are merged:
%.sink = phi i64* ...
%pgocount5 = load i64, i64* %.sink
%27 = add i64 %pgocount5, 1
%28 = bitcast i64* %.sink to i8*
call void @__tsan_write8(i8* %28)
store i64 %27, i64* %.sink
To suppress TSan diagnostics about racy counter updates, make the
counter updates atomic when TSan is enabled. If there's general interest
in this mode it can be surfaced as a clang/swift driver option.
Testing: check-{llvm,clang,profile}
rdar://40477803
Differential Revision: https://reviews.llvm.org/D50867
llvm-svn: 339955
Main value is just simplifying code. I'll further simply the argument handling case in a bit, but that involved a slightly orthogonal change so I went with the mildy ugly intermediate for this patch.
Note that the isSized check in the old LICM code was not carried across. It turns out that check was dead. a) no test exercised it, and b) langref and verifier had been updated to disallow unsized types used in loads.
llvm-svn: 339930
Expand the number of cases when `pow(x, 0.5)` is simplified into `sqrt(x)`
by considering the math semantics with more granularity.
Differential revision: https://reviews.llvm.org/D50036
llvm-svn: 339887
Summary:
Previously, `eraseFromParent()` calls `delete` which invalidates the value of the pointer. Copying the value of the pointer later is undefined behavior in C++11 and implementation-defined (which may cause a segfault on implementations having strict pointer safety) in C++14.
This patch removes the BasicBlock pointer from related SmallPtrSet before `delete` invalidates it in the SimplifyCFG pass.
Reviewers: kuhar, dmgreen, davide, trentxintong
Reviewed By: kuhar, dmgreen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50717
llvm-svn: 339773
Summary:
Without this metadata LLD strips unused PC table entries
but won't strip unused guards. This metadata also seems
to influence the linker to change the ordering in the PC
guard section to match that of the PC table section.
The libFuzzer runtime library depends on the ordering
of the PC table and PC guard sections being the same. This
is not generally guaranteed, so we may need to redesign
PC tables/guards/counters in the future.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: kcc, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50483
llvm-svn: 339733
Summary:
This patch teaches the loop vectorizer to vectorize loops with non
header phis that have have outside uses. This is because the iteration
dependence distance for these phis can be widened upto VF (similar to
how we do for induction/reduction) if they do not have a cyclic
dependence with header phis. When identifying reduction/induction/first
order recurrence header phis, we already identify if there are any cyclic
dependencies that prevents vectorization.
The vectorizer is taught to extract the last element from the vectorized
phi and update the scalar loop exit block phi to contain this extracted
element from the vector loop.
This patch can be extended to vectorize loops where instructions other
than phis have outside uses.
Reviewers: Ayal, mkuper, mssimpso, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50579
llvm-svn: 339703
Summary:
When WPD is performed in a ThinLTO backend, the function may be created
if it isn't already in that module. Module::getOrInsertFunction may
add a bitcast, in which case the returned Constant is not a Function and
doesn't have a name. Invoke stripPointerCasts() on the returned value
where we access its name.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49959
llvm-svn: 339640
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
The transform itself ended up being rather horrible, even though i omitted some cases.
Surely there is some infrastructure that can help clean this up that i missed?
https://rise4fun.com/Alive/3Ou
The initial commit (rL339610)
was reverted, since the first assert was being triggered.
The @positive_with_extra_and test now has coverage for that case.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339621
Even though this code is below a function called optimizeFloatingPointLibCall(),
we apparently can't guarantee that we're dealing with FPMathOperators, so bail
out immediately if that's not true.
llvm-svn: 339618
At least one buildbot was able to actually trigger that assert
on the top of the function. Will investigate.
This reverts commit r339610.
llvm-svn: 339612
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
https://rise4fun.com/Alive/3Ou
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339610
This is a very partial fix for the reported problem. I suspect
we do not get this fold in most motivating cases because most of
the time, the libcall would have been replaced by an intrinsic,
and that optimization is handled elsewhere...but maybe it should
be handled here?
llvm-svn: 339604
This is a second part of D49974 that handles widening of conditional branches that
have very likely `false` branch.
Differential Revision: https://reviews.llvm.org/D50040
Reviewed By: reames
llvm-svn: 339537
Summary: computeKnownBits is expensive. The cases that would be detected by the computeKnownBits portion of haveNoCommonBitsSet were already handled by the earlier call to SimplifyDemandedInstructionBits.
Reviewers: spatel, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50604
llvm-svn: 339531
Try to improve the computed counts when it has been explicitly set by a pragma
or command line option. This moves the code around, so that first call to
computeUnrollCount to get a sensible count and override that if explicit unroll
and jam counts are specified.
Also added some extra debug messages for when unroll and jamming is disabled.
Differential Revision: https://reviews.llvm.org/D50075
llvm-svn: 339501
Pulled out a separate function for some code that calculates
if an inner loop iteration count is invariant to it's outer
loop.
Differential Revision: https://reviews.llvm.org/D50063
llvm-svn: 339500
My previous change moved some code upwards which caused an assert in debug mode
because the global value didn't necessarily have an initializer. Don't do that.
llvm-svn: 339485
If we have an assume which is known to execute and whose operand is invariant, we can lift that into the pre-header. So long as we don't change which paths the assume executes on, this is a legal transformation. It's likely to be a useful canonicalization as other transforms only look for dominating assumes.
Differential Revision: https://reviews.llvm.org/D50364
llvm-svn: 339481
This is a retry of rL339439 with a fix for the problem that
caused the original commit to be reverted at rL339446.
That problem was that the compare can be integer while
the binop is FP or vice-versa, so we need to use the binop
type when we ask for the identity constant.
A test to guard against the problem was added at rL339453.
llvm-svn: 339469
Summary: Similar to asan's flag, it can be used to disable the use of ifunc to access hwasan shadow address.
Reviewers: vitalybuka, kcc
Subscribers: srhines, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50544
llvm-svn: 339447
If code is compiled for X86 without SSE support, the register save area
doesn't contain FPU registers, so `AMD64FpEndOffset` should be equal to
`AMD64GpEndOffset`.
llvm-svn: 339414
This makes the code easier to read and will make an upcoming patch I have easier to review because that patch needed this refactoring to reuse some of the functions.
llvm-svn: 339391
The motivating case is an otherwise dead loop with a fence in it. At the moment, this goes all the way through the optimizer and we end up emitting an entirely pointless loop on x86. This case may seem a bit contrived, but we've seen it in real code as the result of otherwise reasonable lowering strategies combined w/thread local memory optimizations (such as escape analysis).
To handle this simple case, we can teach LICM to hoist must execute fences when there is no other memory operation within the loop.
Differential Revision: https://reviews.llvm.org/D50489
llvm-svn: 339378
Summary:
LoopSimplifyCFG should update ScEv for all loops after a block is deleted.
If the deleted block "Succ" is part of L, then it is part of all parent loops, so forget topmost loop.
Reviewers: greened, mkazantsev, sanjoy
Subscribers: jlebar, javed.absar, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D50422
llvm-svn: 339363
The inalloca parameter has to be the only parameter passed in memory.
Changing the convention to fastcc can break that.
At some point we should teach global opt how to optimize ABI attributes
like inalloca and maybe byval. These attributes are mainly used to match
C ABIs. They are harder for LLVM to optimize and they don't always
generate the best code.
Fixes PR38487
llvm-svn: 339360
Summary: DenseMap's operator[] performs an insertion if the entry isn't found. The second phase of ConstantMerge isn't trying to insert anything: it's just looking to see if the first phased performed an insertion. Use find instead, avoiding insertion of every single global initializer in the map of constants. This has the side-effect of making all entries in CMap non-null (because only global declarations would have null initializers, and that would be a bug).
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D50476
llvm-svn: 339309
This accounts for the missing IR fold noted in D50195. We don't need any fast-math to enable the negation transform.
FP negation can always be folded into an fmul/fdiv constant to eliminate the fneg.
I've limited this to one-use to ensure that we are eliminating an instruction rather than replacing fneg by a
potentially expensive fdiv or fmul.
Differential Revision: https://reviews.llvm.org/D50417
llvm-svn: 339248
Summary:
https://rise4fun.com/Alive/IT3
Comes up in the [most ugliest] `signed int` -> `signed char` case of
`-fsanitize=implicit-conversion` (https://reviews.llvm.org/D50250)
Previously, we were stuck with `not`: {F6867736}
But now we are able to completely get rid of it: {F6867737}
(FIXME: why are we loosing the metadata? that seems wrong/strange.)
Here, we only want to do that it we will be able to completely
get rid of that 'not'.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: vsk, erichkeane, llvm-commits
Differential Revision: https://reviews.llvm.org/D50301
llvm-svn: 339243
Summary:
Reworked the previously committed patch to insert shuffles for reused
extract element instructions in the correct position. Previous logic was
incorrect, and might lead to the crash with PHIs and EH instructions.
Reviewers: efriedma, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50143
llvm-svn: 339166
In combineMetadata, we should be able to preserve K's nonnull metadata,
if K does not move. This condition should hold for all replacements by
NewGVN/GVN, but I added a bunch of assertions to verify that.
Fixes PR35038.
There probably are additional kinds of metadata that could be preserved
using similar reasoning. This is follow-up work.
Reviewers: dberlin, davide, efriedma, nlopes
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47339
llvm-svn: 339149
This function is shared between both implementations. I am not sure if
Utils/Local.h is the best place though.
Reviewers: davide, dberlin, efriedma, xbolva00
Reviewed By: efriedma, xbolva00
Differential Revision: https://reviews.llvm.org/D47337
llvm-svn: 339138
Logic for tracking implicit control flow instructions was added to GVN to
perform PRE optimizations correctly. It appears that GVN is not the only
optimization that sometimes does PRE, so this logic is required in other
places (such as Jump Threading).
This is an NFC patch that encapsulates all ICF-related logic in a dedicated
utility class separated from GVN.
Differential Revision: https://reviews.llvm.org/D40293
llvm-svn: 339086
Properly shrink `pow()` to `powf()` as a binary function and, when no other
simplification applies, do not discard it.
Differential revision: https://reviews.llvm.org/D50113
llvm-svn: 339046
If there is a frequently taken branch dominated by a guard, and its condition is available
at the point of the guard, we can widen guard with condition of this branch and convert
the branch into unconditional:
guard(cond1)
if (cond2) {
// taken in 99.9% cases
// do something
} else {
// do something else
}
Converts to
guard(cond1 && cond2)
// do something
Differential Revision: https://reviews.llvm.org/D49974
Reviewed By: reames
llvm-svn: 338988
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
Summary:
Previously, in the NewPM pipeline, TailCallElim recalculates the DomTree when it modifies any instruction in the Function.
For example,
```
CallInst *CI = dyn_cast<CallInst>(&I);
...
CI->setTailCall();
Modified = true;
...
if (!Modified || ...)
return PreservedAnalyses::all();
```
After applying this patch, the DomTree only recalculates if needed (plus an extra insertEdge() + an extra deleteEdge() call).
When optimizing SQLite with `-passes="default<O3>"` pipeline of the newPM, the number of DomTree recalculation decreases by 6.2%, the number of nodes visited by DFS decreases by 2.9%. The time used by DomTree will decrease approximately 1%~2.5% after applying the patch.
Statistics:
```
Before the patch:
23010 dom-tree-stats - Number of DomTree recalculations
489264 dom-tree-stats - Number of nodes visited by DFS -- DomTree
After the patch:
21581 dom-tree-stats - Number of DomTree recalculations
475088 dom-tree-stats - Number of nodes visited by DFS -- DomTree
```
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49982
llvm-svn: 338954
Merge the helper functions for shrinking unary and binary functions into a
single one, while keeping all their functionality. Otherwise, NFC.
llvm-svn: 338905
In r337830 I added SCEV checks to enable us to insert fewer bounds checks. Unfortunately, this sometimes crashes when multiple bounds checks are added due to SCEV caching issues. This patch splits the bounds checking pass into two phases, one that computes all the conditions (using SCEV checks) and the other that adds the new instructions.
Differential Revision: https://reviews.llvm.org/D49946
llvm-svn: 338902
Summary:
Previously, `removeUnreachableBlocks` still returns true (which indicates the CFG is changed) even when all the unreachable blocks found is awaiting deletion in the DDT class.
This makes code pattern like
```
// Code modified from lib/Transforms/Scalar/SimplifyCFGPass.cpp
bool EverChanged = removeUnreachableBlocks(F, nullptr, DDT);
...
do {
EverChanged = someMightHappenModifications();
EverChanged |= removeUnreachableBlocks(F, nullptr, DDT);
} while (EverChanged);
```
become a dead loop.
Fix this by detecting whether a BasicBlock is already awaiting deletion.
Reviewers: kuhar, brzycki, dmgreen, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49738
llvm-svn: 338882
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
This one requires a bit of explaination. It's not every day you simply delete code to implement an optimization. :)
The transform in question is sinking an instruction from a loop to the uses in loop exiting blocks. We know (from LCSSA) that all of the uses outside the loop must be phi nodes, and after predecessor splitting, we know all phi users must have a single operand. Since the use must be strictly dominated by the def, we know from the definition of dominance/ssa that the exit block must execute along a (non-strict) subset of paths which reach the def. As a result, duplicating a potentially faulting instruction can not *introduce* a fault that didn't previously exist in the program.
The full story is that this patch builds on "rL338671: [LICM] Factor out fault legality from canHoistOrSinkInst [NFC]" which pulled this logic out of a common helper routine. As best I can tell, this check was originally added to the helper function for hoisting legality, later an incorrect fastpath for loads/calls was added, and then the bug was fixed by duplicating the fault safety check in the hoist path. This left the redundant check in the common code to pessimize sinking for no reason. I split it out in an NFC, and am not removing the unneccessary check. I wanted there to be something easy to revert in case I missed something.
Reviewed by: Anna Thomas (in person)
llvm-svn: 338794
Adds some cleaned up debug messages from back when I was writing this.
Hopefully useful to others (and myself) as to why unroll and jam is not
transforming as expected.
Differential Revision: https://reviews.llvm.org/D50062
llvm-svn: 338676
This method has three callers, each of which wanted distinct handling:
1) Sinking into a loop is moving an instruction known to execute before a loop into the loop. We don't need to worry about introducing a fault at all in this case.
2) Hoisting from a loop into a preheader already duplicated the check in the caller.
3) Sinking from the loop into an exit block was the only true user of the code within the routine. For the moment, this has just been lifted into the caller, but up next is examining the logic more carefully. Whitelisting of loads and calls - while consistent with the previous code - is rather suspicious. Either way, a behavior change is worthy of it's own patch.
llvm-svn: 338671
Originally, this was part of a larger refactoring I'd planned, but had to abandoned. I figured the minor improvement in readability was worthwhile.
llvm-svn: 338663
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
This patch just extract code into a separate function to remove some
duplication between the old and new pass manager pipeline. Due to the
different CGSCC iterators used, not all code duplication was eliminated.
llvm-svn: 338585
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
Workaround bug where the InstCombine pass was asserting on the IR added in lit
test, where we have a bitcast instruction after a GEP from an addrspace cast.
The second bitcast in the test was getting combined into
`bitcast <16 x i32>* %0 to <16 x i32> addrspace(3)*`, which looks like it should
be an addrspace cast instruction instead. Otherwise if control flow is allowed
to continue as it is now we create a GEP instruction
`<badref> = getelementptr inbounds <16 x i32>, <16 x i32>* %0, i32 0`. However
because the type of this instruction doesn't match the address space we hit an
assert when replacing the bitcast with that GEP.
```
void llvm::Value::doRAUW(llvm::Value*, bool): Assertion `New->getType() == getType() && "replaceAllUses of value with new value of different type!"' failed.
```
Differential Revision: https://reviews.llvm.org/D50058
llvm-svn: 338395
Summary:
When inserting lcssa Phi Nodes in the exit block
mak sure to preserve the original instructions DL.
Reviewers: vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D50009
llvm-svn: 338391
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338387
Summary:
If the ExtractElement instructions can be optimized out during the
vectorization and we need to reshuffle the parent vector, this
ShuffleInstruction may be inserted in the wrong place causing compiler
to produce incorrect code.
Reviewers: spatel, RKSimon, mkuper, hfinkel, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49928
llvm-svn: 338380
This fold was written in an odd way and tried to avoid
an endless loop by bailing out on all constants instead
of the supposedly problematic case of -1. But (X & -1)
should always be simplified before we reach here, so I'm
not sure how that is a problem.
There were no tests for the commuted patterns, so I added
those at rL338364.
llvm-svn: 338367
The patch introduces loop analysis (VPLoopInfo/VPLoop) for VPBlockBases.
This analysis will be necessary to perform some H-CFG transformations and
detect and introduce regions representing a loop in the H-CFG.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48816
llvm-svn: 338346
The patch introduces dominator analysis for VPBlockBases and extend
VPlan's GraphTraits specialization with the required interfaces. Dominator
analysis will be necessary to perform some H-CFG transformations and
to introduce VPLoopInfo (LoopInfo analysis on top of the VPlan representation).
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48815
llvm-svn: 338310
These are reassociated versions of the same pattern and
similar transforms as in rL338200 and rL338118.
The motivation is identical to those commits:
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338221
https://rise4fun.com/Alive/jDd
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338200
We now, from clang, can turn arrays of
static short g_data[] = {16, 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0};
into structs of the form
@g_data = internal global <{ [8 x i16], [8 x i16] }> ...
GlobalOpt will incorrectly SROA it, not realising that the access to the first
element may overflow into the second. This fixes it by checking geps more
thoroughly.
I believe this makes the globalsra-partial.ll test case invalid as the %i value
could be out of bounds. I've re-purposed it as a negative test for this case.
Differential Revision: https://reviews.llvm.org/D49816
llvm-svn: 338192
Summary:
Fixing 2 issues with the DT update in trivial branch switching, though I don't have a case where DT update fails.
1. After splitting ParentBB->UnswitchedBB edge, new edges become: ParentBB->LoopExitBB->UnswitchedBB, so remove ParentBB->LoopExitBB edge.
2. AFAIU, for multiple CFG changes, DT should be updated using batch updates, vs consecutive addEdge and removeEdge calls.
Reviewers: chandlerc, kuhar
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49925
llvm-svn: 338180
The tests with constants show a missing optimization.
Analysis for adds is better than subs, so this can also
help with other transforms. And codegen is better with
adds for targets like x86 (destructive ops, no sub-from).
https://rise4fun.com/Alive/llK
llvm-svn: 338118
This is a follow-up for the patch rL335020. When we replace compares against
trunc with compares against wide IV, we can also replace signed predicates with
unsigned where it is legal.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D48763
llvm-svn: 338115
LowerDbgDeclare inserts a dbg.value before each use of an address
described by a dbg.declare. When inserting a dbg.value before a CallInst
use, however, it fails to append DW_OP_deref to the DIExpression.
The DW_OP_deref is needed to reflect the fact that a dbg.value describes
a source variable directly (as opposed to a dbg.declare, which relies on
pointer indirection).
This patch adds in the DW_OP_deref where needed. This results in the
correct values being shown during a debug session for a program compiled
with ASan and optimizations (see https://reviews.llvm.org/D49520). Note
that ConvertDebugDeclareToDebugValue is already correct -- no changes
there were needed.
One complication is that SelectionDAG is unable to distinguish between
direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also
fixes this long-standing issue in order to not regress integration tests
relying on the incorrect assumption that all frame-index SDDbgValues are
indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot
be lowered properly otherwise. Basically the fix prevents a direct
SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice
by a debugger. There were a handful of tests relying on this incorrect
"FRAMEIX => indirect" assumption which actually had incorrect
DW_AT_locations: these are all fixed up in this patch.
Testing:
- check-llvm, and an end-to-end test using lldb to debug an optimized
program.
- Existing unit tests for DIExpression::appendToStack fully cover the
new DIExpression::append utility.
- check-debuginfo (the debug info integration tests)
Differential Revision: https://reviews.llvm.org/D49454
llvm-svn: 338069
Create a processHeaderPhiOperands for analysing the instructions
in the aft blocks that must be moved before the loop.
Differential Revision: https://reviews.llvm.org/D49061
llvm-svn: 338033
In some cases LSV sees (load/store _ (select _ <pointer expression>
<pointer expression>)) patterns in input IR, often due to sinking and
other forms of CFG simplification, sometimes interspersed with
bitcasts and all-constant-indices GEPs. With this
patch`areConsecutivePointers` method would attempt to handle select
instructions. This leads to an increased number of successful
vectorizations.
Technically, select instructions could appear in index arithmetic as
well, however, we don't see those in our test suites / benchmarks.
Also, there is a lot more freedom in IR shapes computing integral
indices in general than in what's common in pointer computations, and
it appears that it's quite unreliable to do anything short of making
select instructions first class citizens of Scalar Evolution, which
for the purposes of this patch is most definitely an overkill.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49428
llvm-svn: 337965
r337828 resolves a PredicateInfo issue with unnamed types.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 337904
This ports the profiling runtime on Fuchsia and enables the
instrumentation. Unlike on other platforms, Fuchsia doesn't use
files to dump the instrumentation data since on Fuchsia, filesystem
may not be accessible to the instrumented process. We instead use
the data sink to pass the profiling data to the system the same
sanitizer runtimes do.
Differential Revision: https://reviews.llvm.org/D47208
llvm-svn: 337881
Summary: truncateToMinimalBitWidths() doesn't handle all Instructions and the worst case is compiler crash via llvm_unreachable(). Fix is to add a case to handle PHINode and changed the worst case to NO-OP (from compiler crash).
Reviewers: sbaranga, mssimpso, hsaito
Reviewed By: hsaito
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49461
llvm-svn: 337861
This patch uses SCEV to avoid inserting some bounds checks when they are not needed. This slightly improves the performance of code compiled with the bounds check sanitizer.
Differential Revision: https://reviews.llvm.org/D49602
llvm-svn: 337830
This is a workaround and it would be better to fix this generally, but
doing it generally is quite tricky. See D48541 and PR38117.
Doing it in PredicateInfo directly allows us to use the type address to
differentiate different unnamed types, because neither the created
declarations nor the ssa_copy calls should be visible after
PredicateInfo got destroyed.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D49126
llvm-svn: 337828
Summary:
Without this change, the WholeProgramDevirt pass, which requires the
TargetLibraryInfo, will construct one from the default triple.
Fixes PR38139.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49278
llvm-svn: 337750
This patch makes debug counters keep track of the total number of times
we've called `shouldExecute` for each counter, so it's easier to build
automated tooling on top of these.
A patch to print these counts is coming soon.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D49560
llvm-svn: 337748
In ConstructSSAForLoadSet if an available value is actually the load that we're
doing SSA construction to eliminate, then we can omit it as SSAUpdate will add
in the value for the phi that will be replacing it anyway. This can result in
simpler IR which can allow further optimisation.
Differential Revision: https://reviews.llvm.org/D44160
llvm-svn: 337686
Bug fix for PR36787. When reasoning if it's safe to hoist a load we
want to make sure that the defining memory access dominates the new
insertion point of the hoisted instruction. safeToHoistLdSt calls
firstInBB(InsertionPoint,DefiningAccess) which returns false if
InsertionPoint == DefiningAccess, and therefore it falsely thinks
it's safe to hoist.
Differential Revision: https://reviews.llvm.org/D49555
llvm-svn: 337674
We tested different cap values with a recent commit of Chromium. Our results show that the 32-byte cap yields the smallest binary and all the caps yield similar performance.
Based on the results, we propose to change the cap value to 32-byte.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D49405
llvm-svn: 337622
This reapplies commit r337489 reverted by r337541
Additionally, this commit contains a speculative fix to the issue reported in r337541
(the report does not contain an actionable reproducer, just a stack trace)
llvm-svn: 337606
When pointer checking is enabled, it's important that every pointer is
checked before its value is used.
For stores MSan used to generate code that calculates shadow/origin
addresses from a pointer before checking it.
For userspace this isn't a problem, because the shadow calculation code
is quite simple and compiler is able to move it after the check on -O2.
But for KMSAN getShadowOriginPtr() creates a runtime call, so we want the
check to be performed strictly before that call.
Swapping materializeChecks() and materializeStores() resolves the issue:
both functions insert code before the given IR location, so the new
insertion order guarantees that the code calculating shadow address is
between the address check and the memory access.
llvm-svn: 337571
This version contains a fix to add values for which the state in ParamState change
to the worklist if the state in ValueState did not change. To avoid adding the
same value multiple times, mergeInValue returns true, if it added the value to
the worklist. The value is added to the worklist depending on its state in
ValueState.
Original message:
For comparisons with parameters, we can use the ParamState lattice
elements which also provide constant range information. This improves
the code for PR33253 further and gets us closer to use
ValueLatticeElement for all values.
Also, as we are using the range information in the solver directly, we
do not need tryToReplaceWithConstantRange afterwards anymore.
Reviewers: dberlin, mssimpso, davide, efriedma
Reviewed By: mssimpso
Differential Revision: https://reviews.llvm.org/D43762
llvm-svn: 337548
It's more aggressive than we need to be, and leads to strange
workarounds in other places like call return value inference. Instead,
just directly mark an edge viable.
Tests by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D49408
llvm-svn: 337507
This is mostly a preparation work for adding a limited support for
select instructions. It proved to be difficult to do due to size and
irregularity of Vectorizer::isConsecutiveAccess, this is fixed here I
believe.
It also turned out that these changes make it simpler to finish one of
the TODOs and fix a number of other small issues, namely:
1. Looking through bitcasts to a type of a different size (requires
careful tracking of the original load/store size and some math
converting sizes in bytes to expected differences in indices of GEPs).
2. Reusing partial analysis of pointers done by first attempt in proving
them consecutive instead of starting from scratch. This added limited
support for nested GEPs co-existing with difficult sext/zext
instructions. This also required a careful handling of negative
differences between constant parts of offsets.
3. Handing a case where the first pointer index is not an add, but
something else (a function parameter for instance).
I observe an increased number of successful vectorizations on a large
set of shader programs. Only few shaders are affected, but those that
are affected sport >5% less loads and stores than before the patch.
Reviewed By: rampitec
Differential-Revision: https://reviews.llvm.org/D49342
llvm-svn: 337489