The code comments didn't match the code logic, and we didn't actually distinguish the fake unary (not/neg/fneg)
operators from arguments. Adding another level to the weighting scheme provides more structure and can help
simplify the pattern matching in InstCombine and other places.
I fixed regressions that would have shown up from this change in:
rL290067
rL290127
But that doesn't mean there are no pattern-matching logic holes left; some combines may just be missing regression tests.
Should fix:
https://llvm.org/bugs/show_bug.cgi?id=28296
Differential Revision: https://reviews.llvm.org/D27933
llvm-svn: 294049
Background/motivation - I was circling back around to:
https://llvm.org/bugs/show_bug.cgi?id=28296
I made a simple patch for that and noticed some regressions, so added test cases for
those with rL281055, and this is hopefully the minimal fix for just those cases.
But as you can see from the surrounding untouched folds, we are missing commuted patterns
all over the place, and of course there are no regression tests to cover any of those cases.
We could sprinkle "m_c_" dust all over this file and catch most of the missing folds, but
then we still wouldn't have test coverage, and we'd still miss some fraction of commuted
patterns because they require adjustments to the match order.
I'm aware of the concern about the potential compile-time performance impact of adding
matches like this (currently being discussed on llvm-dev), but I don't think there's any
evidence yet to suggest that handling commutative pattern matching more thoroughly is not
a worthwhile goal of InstCombine.
Differential Revision: https://reviews.llvm.org/D24419
llvm-svn: 290067
I was looking to fix a bug in getComplexity(), and these cases showed up as
obvious failures. I'm not sure how to find these in general though.
llvm-svn: 281055
The special case did not work when run under -reassociate and can easily
be expressed by a further generalization of an existing pattern.
llvm-svn: 217227
While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B). Our existing patterns fail once
this happens.
To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.
What follows bellow is a correctness proof of the transform using CVC3.
$ cat t.cvc
A, B, C : BITVECTOR(64);
QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;
QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;
$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.
llvm-svn: 214342
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
This change attempts to simplify (X^Y) -> X or Y in the user's context if we know that
only bits from X or Y are demanded.
A minimized case is provided bellow. This change will simplify "t>>16" into "var1 >>16".
=============================================================
unsigned foo (unsigned val1, unsigned val2) {
unsigned t = val1 ^ 1234;
return (t >> 16) | t; // NOTE: t is used more than once.
}
=============================================================
Note that if the "t" were used only once, the expression would be finally optimized as well.
However, with with this change, the optimization will take place earlier.
Reviewed by Nadav, Thanks a lot!
llvm-svn: 169317
Enhancement to InstCombine. Try to catch this opportunity:
---------------------------------------------------------------
((X^C1) >> C2) ^ C3 => (X>>C2) ^ ((C1>>C2)^C3)
where the subexpression "X ^ C1" has more than one uses, and
"(X^C1) >> C2" has single use.
----------------------------------------------------------------
Reviewed by Nadav (with minor change per his request).
llvm-svn: 168615
to expose greater opportunities for store narrowing in codegen. This patch fixes a potential
infinite loop in instcombine caused by one of the introduced transforms being overly aggressive.
llvm-svn: 113763
This can result in increased opportunities for store narrowing in code generation. Update a number of
tests for this change. This fixes <rdar://problem/8285027>.
Additionally, because this inverts the order of ors and ands, some patterns for optimizing or-of-and-of-or
no longer fire in instances where they did originally. Add a simple transform which recaptures most of these
opportunities: if we have an or-of-constant-or and have failed to fold away the inner or, commute the order
of the two ors, to give the non-constant or a chance for simplification instead.
llvm-svn: 113679
long test(long x) { return (x & 123124) | 3; }
Currently compiles to:
_test:
orl $3, %edi
movq %rdi, %rax
andq $123127, %rax
ret
This is because instruction and DAG combiners canonicalize
(or (and x, C), D) -> (and (or, D), (C | D))
However, this is only profitable if (C & D) != 0. It gets in the way of the
3-addressification because the input bits are known to be zero.
llvm-svn: 97616
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537